期刊文献+

基于VD.AiNet聚类算法的空袭目标类型识别 被引量:2

Type Recognition of Air-Attack Target Based on VD-AiNet Cluster Algorithm
下载PDF
导出
摘要 针对防空反导作战中空袭目标类型识别问题,在分析空袭目标的主要类型、识别指标及其识别原则的基础上,将人工免疫算法中矢量距人工免疫网络聚类算法应用于抗体样本训练模块,并建立了抗体训练和目标识别的并行决策模型。最后进行了算例验证,结果表明了算法和模型的可行性和有效性。 To solve the problem of recognizing aerial defense and antimissile target type, based on the analysis of the primary air-attack target types, important useful factors and primary recognition principles, the vector distance primary artificial immune network cluster algorithm of artificial immune algo-rithm is used in the model of antibody swatch training. Furthermore, the side-by-side decision making model of antibody training and target recognition are established. Finally, the algorithm and model is validated with examples, proving the utility and effectiveness of the algorithm and model.
出处 《现代防御技术》 北大核心 2011年第6期57-62,共6页 Modern Defence Technology
基金 国家973项目(613900201)
关键词 目标类型识别 矢量距 人工免疫网络 聚类 target type recognition vector distance artificial immune network cluster
  • 相关文献

参考文献7

  • 1吴晓勇,冯德军,张文明.反导系统中的模式识别技术及其发展趋势[J].航天电子对抗,2009,25(6):1-4. 被引量:1
  • 2HUANG S J. An Immune-Based Optimization Method to Capacitor Placement in a Radial Distribution System [ J]. IEEE Trans Power Delivery, 2000,15 ( 2 ) : 799 - 749.
  • 3CARTER J H. The Immune System as a Model for Pat- tern Recognition and Classification [ J ]. Journal of the American Medical Informatics Association, 2000, 7 (3) : 28-41.
  • 4TIMMIS J, NEAL M, HUNT J. Artificial Immune Sys- tem for Data Analysis [ J ]. Biosystems, 2000, 55 ( 1 - 3) : 143-150.
  • 5Forrest S, Hofmeyr S A. Immunology as Information Processing[ C] // Design Principles for Immune System &Other Distributed Autonomous Systems. Oxford Unix Press, 2000:361 -387.
  • 6邢清华,刘付显.空袭目标类型的模糊识别与聚类研究[J].系统工程理论与实践,2004,24(6):139-143. 被引量:10
  • 7De Castro L N, Zuben F J V. An Evolutionary Network for Data Clustering [ C ] // Proceedings of 6th Brazilian Symposium on Neural Network. Rio de Janeiro, R J Brazil: IEEE Computer Society Press, 2000:84-89.

二级参考文献14

  • 1Hussian MA. HRR,length and velocity decision regions for rapid target identification[C]. SPIE conference, 1999,3810: 40 - 52.
  • 2刘丽华.BM中段雷达特性分析与提取方法研究[D].长沙:国防科大硕士学位论文,2006.
  • 3Tofani A. Computer modeling of infrared head-on emiision from missile noses[J]. Opt. Eng,1990,29(2) :87 - 97.
  • 4Haberstroh R, Kadar I. Multi-spectral data fusion using neural networks[R]. SPIE 1995:65- 75.
  • 5Resch CL. Preliminary results of thrust termination debris modeling and discrimination [ R]. JHU/APL Technical Memorandum RSI - 97 - 021,1997.
  • 6安玮 徐晖 李宏 孙仲康.基于热物理仿真分析的红外点;目标特征提取与识别.国防科技大学学报,2002,21(3):209-212.
  • 7Lemnios WZ,Grometstein AA. Overview of the Lincoln laboratory ballistic missile defense program[J]. Lincoln Laboratory Journal,2002,13(1) :9 - 32.
  • 8FuKunang K. Introduction to statistical pattern recognition [M]. Bo-Ston: Academic Press,1990.
  • 9Foster T. Application of pattern recognition techniques for early warning radar ( EWR ) discrimination [ R]. ADA298895,1995.
  • 10张居凤.BM目标动态雷达特性仿真与识另日研究[D].长沙:国防科大硕士学位论文,2004.

共引文献9

同被引文献33

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部