期刊文献+

基于神经网络的修正“当前”统计模型算法

Improved Current Statistical Model Algorithm Based on Neural Network
下载PDF
导出
摘要 "当前"统计模型及其自适应卡尔曼滤波算法虽能对强机动目标进行较好跟踪,但存在对弱机动目标跟踪误差较大的缺陷。针对这一问题,在推导传统"当前"统计模型适用范围的基础上,对"当前"加速度的概率密度函数进行改进,得到一种修正的"当前"统计模型算法。为克服算法对加速度极限值的依赖,进一步提高跟踪精度,利用神经网络将2种参数信息融合,通过其输出对系统方差作加权调整。仿真结果表明,不论是对弱机动目标还是强机动目标,新算法较传统的算法都有较高的跟踪精度。 The current statistical model and adaptive Kalman filtering algorithm operates well in tracking strong maneuvering targets well but makes bigger error in tracking weak maneuvering targets. To solve this issue, an applicable bound of conventional current statistical model is derived. Based on the derivation, the current acceleration' s probability density function is improved and an improved current statistical model tracking algorithm is proposed. To overcome its limitation on acceleration and further im- prove its tracking precision, two sources of information are fused by using the neural network. Then the output of the network is used to adjust the system variance. Simulation results show that the proposed algorithm is better in tracking not only the weak maneuvering targets, but also the strong maneuvering targets.
机构地区 中国人民解放军
出处 《现代防御技术》 北大核心 2011年第6期147-151,共5页 Modern Defence Technology
关键词 当前统计模型 机动目标跟踪 神经网络 信息融合 current statistical model maneuvering targets tracking neural network information fusion
  • 相关文献

参考文献9

  • 1Bar-Shalom Y, LI X. Estimation and Tracking: Princi- ples,Techniques and Software [ M ]. New York : Artech House, 1993.
  • 2CHAN Y, HU A , PLANT T. A Kalman Filter Based Tracking Scheme with Input Estimation [ J ]. 1EEE Trans. on Aerospace and Electronic Systems, 1979, 15 (2) :237-244.
  • 3Bar-shalom Y , Birmiw for Maneuvering Target al K. Variable Tracking [ J ]. Dimension Filter IEEE Tans. on Aerospace and Electronic Systems, 1982, 18 ( 5 ) : 611 - 619.
  • 4BLOM H, Bar-shalom Y. The Interacting Multiple Mod- el Algorithm for System with Markovian Switching [ J ]. IEEE Trans. on Autom. Control, 1988,33 (8) :780 - 783.
  • 5刁联旺,杨静宇.一种改进的机动目标“当前”统计模型的描述[J].兵工学报,2005,26(6):825-828. 被引量:23
  • 6CHIN L. Application of Neural Networks in Target Tracking Data Fusion[J]. IEEE Trans on AES,1994, 30(1) :281-287.
  • 7SADATI N, LANGARY D. A Neural Aided Adaptive Second Order Gaussian Filter for Tracking Maneuvering [ C]// Proc. of the 17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI~05), Hong Kong, China, 2005:439 -446.
  • 8樊国创,戴亚平,许向阳.基于神经网络的混合双滤波器自适应目标跟踪算法[J].火力与指挥控制,2009,34(2):120-123. 被引量:3
  • 9李彬彬,王朝英.一种基于“当前”统计模型的改进目标跟踪算法[J].弹箭与制导学报,2008,28(2):81-83. 被引量:8

二级参考文献19

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部