期刊文献+

信用风险中回收率分布的双Beta模型 被引量:2

Double Beta Distribution Model of Recovery Rate in Credit Risk
原文传递
导出
摘要 本文研究了随机回收率的分布,建立了回收率的双Beta分布密度模型,它具有双峰分布的特点,这与Moody公司的最新研究相吻合,弥补了现有回收率分布模型均为单峰的不足。利用基于数论网格的序贯优化算法对所建模型的参数做出了估计,借助于核密度估计的工具,进行了实证分析,结果表明双Beta模型的拟合误差很小,远小于Beta模型的误差,它是表示回收率理想的模型。最后给出了抽取双Beta分布随机数的方法。 In this paper, the distribution of random recovery rate is studied, and double Beta distribution density model is established. This model has a characteristic of two peaks, which meets the new findings of Moody company, and improves the result that the present models all have only one peak. By using the sequential optimization algorithm based the NT-net to estimate parameters and the tools of kernel density estimation, the demonstration study is made. The result shows that the fitting error of double Beta model is quite little and far less than that of Beta model, so double Beta model is an ideal model to denote the distribution of recovery rate. The method is given to draw the random numbers from double Beta model at the end of the paper.
出处 《中国管理科学》 CSSCI 北大核心 2011年第6期10-14,共5页 Chinese Journal of Management Science
基金 国家自然科学基金资助项目(70573076) 国家社会科学基金资助项目(11BGL072)
关键词 回收率 双Beta模型 核密度估计 双峰分布 序贯优化算法 recovery rate double Beta distribution kernel density estimation two peak distribution sequential optimization algorithm
  • 相关文献

参考文献22

  • 1Altman,E. ,Brady, B. ,Resti. A. etc. The link between default and recovery rates.. Theory, empirical evidence, and implications[J]. Journal of Business, 2005,78 (6) : 2203--2227.
  • 2Grunert,J. , Weber, M.. Recovery rates of commercial lending: empirical evidence for German companies[J]. Journal of Banking and Finance, 2008,33(3):505--513.
  • 3叶晓可,刘海龙.银行不良贷款违约损失率结构特征研究[J].上海管理科学,2006,28(6):12-15. 被引量:21
  • 4汪办兴.中国银行贷款违约损失率影响因素的实证分析[J].经济评论,2007(3):90-93. 被引量:10
  • 5代太山,陈敏,杨晓光.不同担保类型之下违约损失率的结构特征:针对中国的实证[J].南方经济,2008,37(8):28-39. 被引量:12
  • 6Hu, Y. , Perraudin, W.. The dependence of recovery rates and defaults [R]. Working paper, Birkbeck Col- lege, 2002.
  • 7Dullmann,K. , Trapp, M.. Systematic risk in recovery rates-an empirical analysis of U. S. corporate credit ex- posures[R]. Working paper, 2004, February.
  • 8Gupton,G. , Stein,R.. Losscalc V2: dynamic prediction of LGD[R]. Working paper, Moody's KMV, January 2005.
  • 9Rosch, D. , Scheule, H.. A multi-factor approach for systematic default and recovery risk[J]. The Journal of Fixed Income, 2005, 15(2) :63--75.
  • 10Frye, J.. Depressing recoveries[J]. Risk, 2000, 11: 108--111.

二级参考文献58

共引文献37

同被引文献29

  • 1林则夫.基于巴塞尔新资本协议的项目融资贷款风险评价体系[J].中国管理科学,2008,16(S1):346-352. 被引量:3
  • 2马志卫,刘应宗.基于蒙特卡洛模拟的贷款组合优化决策方法[J].管理科学,2006,19(3):66-70. 被引量:7
  • 3郭亚军.综合评价理论、方法及应用[M].北京:科学出版社,2002:211-218.
  • 4Garcia V, Marqu6s A I, Scinchez J S. On the use of data filtering techniques for credit risk prediction with in- stance-based models [J]. Expert Systems with Applica- tions, 2012, 39(18): 13267--13276.
  • 5Baourakis G, Conisescu M, Dijk G V, et al. A multicri- teria approach for rating the credit risk of financial insti tutions [J]. Computational Management Science, 2009, 6(3) : 347--356.
  • 6Danenas P, Garsva G. Credit risk evaluation modeling using evolutionary linear SVM classifiers and sliding window approach [J]. Procedia Computer Science, 2012, 9: 1324--1333.
  • 7Bahrammirzaee A, Ghatari A R, Ahmadi P, et al. Hy- brid credit ranking intelligent system using expert sys- tem and artificial neural networks [J]. Appl Intell, 2011,34(1) :28--46.
  • 8Moody's. Rating methodology for project finance trans actions [R]. New York, Moody's, 2003.
  • 9Stand & Poor's. Global project finance year book [R]. New York, Stand & Poor's, 2008.
  • 10Komendantova N, Patt A, Barras L, et al. Perception of risks in renewable energy projects., the case of con- centrated solar power in North Africa [J]. Energy Pol- icy, 2012, 40: 103--109.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部