期刊文献+

基于改进模拟退火任务调度算法研究 被引量:3

Task Scheduling Based on Improved Simulated Annealing Algorithm
下载PDF
导出
摘要 研究任务调度优化系统问题。任务调度问题的主要难点在于复杂度太高,传统的基于任务调度Q学习算法更新收敛速度慢。针对协同工作中的任务调度实际问题,提出了一种基于模拟退火的改进的Q学习算法。算法首先建立任务调度目标模型,在分析了Q学习算法的基础上,通过引入模拟退火算法,同时结合贪婪策略,以及在状态空间上的筛选判断,并给出了任务调度的整个过程。仿真结果表明,与单一的Q学习任务调度算法相比,改进的算法显著地提高了收敛速度,缩短了执行时间。从而验证了改进算法的有效性。 The task of scheduling problems was studied.Q-learning algorithm based on the traditional learning algorithms for task scheduling has slow convergence speed,and the paper presented a simulated annealing-based Q-learning algorithm to improve the convergence speed.Task scheduling algorithm for object model was established,and the analysis of the Q-learning algorithm based on simulated annealing algorithm was introduced.Combined with the greedy strategy and the filtrating and determining in the state space,and the whole process of scheduling was given.Simulation results show that Q-learning tasks with a single scheduling algorithm significantly improves the convergence rate and shortens the execution time.
出处 《计算机仿真》 CSCD 北大核心 2011年第12期212-214,共3页 Computer Simulation
关键词 任务调度 学习策略 模拟退火算法 Task scheduling Learning strategies Simulated annealing algorithm
  • 相关文献

参考文献12

二级参考文献82

共引文献87

同被引文献27

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部