期刊文献+

拉伸偏心椭圆孔板的应力集中系数表达式 被引量:9

Stress Concentration Factor Expression for a Tension Strip With an Eccentric Elliptical Hole
下载PDF
导出
摘要 先用半解析半经验的方法推导出拉伸中心椭圆孔有限宽板应力集中系数的显式表达式.将其计算结果和Durelli的光弹性实验结果、Isida公式以及有限元分析结果比较可知,新推导公式的精度较高,且适用范围更广.再用类似的方法推导出拉伸偏心椭圆孔板应力集中系数的显式表达式.经与Isida的公式和有限元分析结果比较可知,该公式适用范围更广、精度更高.当偏心距在一定范围内,误差小于8%.根据应力集中系数与应力强度因子的关系,由已得到的应力集中系数得出拉伸中心裂纹有限宽板和拉伸偏心裂纹板的应力强度因子.经与已有公式以及有限元分析结果比较可知,该应力强度因子表达式也有足够的精度. First, an explicit stress concentration factor expression for a tension finite-width strip with a central elliptical hole was formulated by using a semi-analytical and semi-empirical method. Comparing the results from this expression with those from Durelli' s photo-elastic experiment, Isida' s formula and finite element analysis, its accuracy was proved to be adequate and its application scope was wider. Then another explicit stress concentration factor expres- sion for a tension strip with an eccentric elliptical hole was also obtained by using the similar method. Comparing results from the expression with the ones from Isida' s formula and finite element analysis, it is shown that this formula is with a wider application scope and more accu- rate. And when the eccentricity of elliptical hole was in a certain range, the error is less than 8%. Based on the relation between stress concentration central and stress intensity factor, a stress intensity factor expression for tension strips with a center or an eccentric crack was derived with the obtained stress concentration factor expressions. Compared with existing formulae and finite element analysis, this stress intensity factor expression is also with sufficient accuracy.
出处 《应用数学和力学》 CSCD 北大核心 2012年第1期113-124,共12页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(51179115)
关键词 应力集中系数 显式表达式 偏心椭圆孔 中心椭圆孔 拉伸有限宽板 半解析法 stress concentration factor explicit expression eccentric elliptical hole centralelliptical hole finite-width tension strip semi-analytical method
  • 相关文献

参考文献22

二级参考文献49

  • 1苏虹,孙锁泰,赵国旗.有限宽正交异性薄板应力集中的试验研究[J].复合材料学报,1995,12(4):94-98. 被引量:2
  • 2西田正孝.应力集中[M].北京:机械工业出版社,1986.300.
  • 3徐芝纶.弹性力学(上册)[M].北京:人民教育出版社,1978..
  • 4萨文Г H 卢鼎霍(译).孔附近的应力集中[M].北京:科学出版社,1958..
  • 5谢鸣九 焦坤芳 张瑜 等.碳纤维环氧复合材料层板的应力集中系数研究[J].航空学报,1988,9(6):233-239.
  • 6Kolosov V. On the application of complex function theory to plane problem of the mathematical theory of elasticity [D]. Doctoral Dissertation, Dorpat University, Tactu, 1909. (in Russian).
  • 7Muskhelishvili N I. Some basic problems of the mathematical theory of elasticity [M]. Holland: Noordhoof Leyden, 1953.
  • 8Neuber H. Theory of notch stresses [M]. Berlin: Springer-Verlag, 1958.
  • 9Westergaard H M. Bearing pressures and cracks [J]. Journal of Applied Mechanics, 1939, 6: A49-A53.
  • 10Irwin G R. Analysis of stresses and strain near the end of a crack transversing a plate [J]. Journal of Applied Mechanics, 1957, 24:361-364.

共引文献104

同被引文献67

引证文献9

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部