期刊文献+

基于改进的SOFM神经网络的矢量量化方法 被引量:4

Vector Quantization Based on the Improved Self-Organizing Feature Mapping Neural Networks
下载PDF
导出
摘要 基于Kohonen自组织特征映射(SOFM)神经网络的矢量量化图像压缩编码是一种非常高效的方法,但其码字利用不均匀,某些神经元永远无法获胜而产生"死神经元"的问题仍然十分明显。在追求为使各个神经元能以较为均衡的几率获胜,尽量避免"死神经元"过程中,Kohonen SOFM-C很具代表性,它既能保持拓扑不变性映射又能最有效地避免"死神经元",是一种带"良心"的竞争学习方法。本文利用Kohonen SOFM-C码字利用更为均衡的优点,并针对SOFM在胜出神经元的邻域内神经元修改权值方法的不足,提出基于SOFM-C的辅助神经元自组织映射算法,此方法具有开放性,可随时添加入新的有效算法模块以达到更好的效果。并把该矢量量化算法应用于小波变换域,以获得更好的码书。仿真结果表明,该方法优于已有的SOFM方法。 The image impression method of vector quantization based on the improved self-organizing feature mapping neural networks is a very efficient way.However,code word cannot be uniformly used.Some neurons never win and the problem of "dead neurons" is still very evident.Kohonen SOFM-C is a conscientious competitive learning method.It can maintain the topological invariant map and avoid "dead neurons" most effectively.In this paper,based on the auxiliary SOFM-C neurons,a self-organizing mapping algorithm is proposed.The method is open and you can always add modules into the new effective method to achieve better results.The vector quantization algorithm has been applied to the wavelet transform domain to obtain a better codebook.The simulation results show that the method is better than the existing SOFM method.
作者 马勇 阮洋
出处 《计算机工程与科学》 CSCD 北大核心 2011年第12期126-129,共4页 Computer Engineering & Science
基金 中国煤炭工业协会2010年计划项目(MTKJ2010-295)
关键词 KOHONEN SOFM 神经网络 矢量量化 图像压缩 Kohonen SOFM neural network vector quantization image impression
  • 相关文献

参考文献7

二级参考文献24

  • 1黎洪松,刘洪伟.新的学习矢量量化初始码书算法[J].北京邮电大学学报,2006,29(4):33-35. 被引量:12
  • 2Linde Y,Buzo A,Gray R M.An algorithm for vector quantizer design[J].IEEE Trans on Com,1980,28(1):84-95.
  • 3Yair E.Competitive learning and soft competition for vector quantizer design[J].IEEE Trans on SP,1992,40(2):294-309.
  • 4Cierniak R,Rutkowski L.On image compression by competitive neural networks and optimal linear predictors[J].SP Image Communication,2000,15:559-565.
  • 5Kohonen.Engineering applications of Self-Organizing Map[J].Pro-ceedings of the IEEE,1996,84(10):1358-1383.
  • 6Su M C,Chang H T.Fast self-organizing feature map algorithm[J].IEEE Trans on Neural Networks,2000,11(3):721-732.
  • 7Laha A,Pal N R.Chanda B.Design of vector quantizer for image compression using self-organizing feature map and surface fitting[J].IEEE Trans Image Processing,2004,13(10):1291-1303.
  • 8SUN H W.Efficient vector quantization using genetic algorithm[J].Neural Comput & Applic,2005,14:203-211.
  • 9Kim K B,Kim S S.Kim C H.Vector quantizer of medical image using wavelet transform and enhanced SOM algorithm[J].Neural Comput & Applic,2006,15:245-251.
  • 10Thangavel K,Kumar D A.Optimization of code book in vector quantization[J].Ann Oper Res,2006,143:317-325.

共引文献30

同被引文献46

  • 1黎洪松,全子一.图像矢量量化──频率敏感自组织特征映射算法[J].通信学报,1995,16(2):59-64. 被引量:20
  • 2段勇,徐心和,崔宝侠.改进的SOFM及其在矢量量化中的应用[J].系统仿真学报,2006,18(3):718-721. 被引量:7
  • 3张乃尧 等.神经网络与模糊控制[M].北京:清华大学出版社,1985..
  • 4朱大奇,史慧.人工神经网络原理及应用[M].北京:科学出版社.2003.
  • 5Linde Y, Buzo A,Gray R M. An algorithm for vec- tor quantization design[J]. IEEE Trans on Commu- nication, 1980, COM-28: 84-95.
  • 6Constantinescu C, Storer J A. Online adaptive vec- tor quantization with variable size codebook entries E J]. Information Processing and Management, 1994, 30(6), 745-758.
  • 7Constantinescu C, Storer J A. Improved techniques for single-pass adaptive vector quantization[C] ff Proceedings of the IEEE. Baltimore, MD, USA: IEEE,1994b, 82(6), 933-939.
  • 8Nasrabadi N M, Feng Y. Vector quantization of im- ages based upon the Kohonen self-organizing feature maps [C]// Proceedings of IEEE Int' 1 Conference on Neural Networks. SanDiego, California, USA: IEEE, 1988: 101-108.
  • 9Lee T, Peterson A M. Adaptive vector quantization using a self-development neural network [J]. IEEE Journal of Select Areas in Communication, 1990, 8 (8) : 1458-1471.
  • 10Ahalt S C, Krishmamarthy A K, Melton D E, et al. Competitive learning algorithms for vector quantiza- tion [J]. Neural Networks, 1990, 3: 277-290.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部