期刊文献+

基于用户日志双向聚类的查询扩展方法 被引量:1

下载PDF
导出
摘要 文章对基于用户查询日志的查询扩展模型进行了优化,提出了一种新的基于用户日志双向聚类的查询扩展模型。该模型对用户日志中的用户查询和点击文档进行双向聚类,挑选出更符合查询主题的查询扩展词,将其加入到搜索系统中,以达到为用户提供高质量检索结果的目的。实验证明,该方法能够有效提高检索的质量。
出处 《数字技术与应用》 2011年第12期233-234,共2页 Digital Technology & Application
  • 相关文献

参考文献6

二级参考文献25

  • 1刘涛,吴功宜,陈正.一种高效的用于文本聚类的无监督特征选择算法[J].计算机研究与发展,2005,42(3):381-386. 被引量:37
  • 2严莉莉,张燕平.基于类信息的文本聚类中特征选择算法[J].计算机工程与应用,2007,43(12):144-146. 被引量:7
  • 3Salton G, McGill M J. An Introduction to Modern Information Retrieval. New York, USA: McGraw-Hill, 1983.
  • 4Yang Yiming, Pedersen J O. A Comparative Study on Feature Selection in Text Categorization// Proc of the 14th International Conference on Machine Learning. Nashville, USA, 1997:412 -420.
  • 5Liu Yuanehao, Wang Xiaolong, Liu Bingquan. A Feature Selection Algorithm for Document Clustering Based on Word Co-Occurrence Frequency// Proc of the 3rd International Conference on Machine Learning and Cybernetics. Shanghai, China, 2004, Ⅴ: 2963 -2968.
  • 6Cheng Yizong, Church G M. Biclustering of Expression Data// Proc of the 8th International Conference on Intelligent Systems for Molecular Biology. Vienna, Austria, 2000: 93- 103.
  • 7Xue Guirong, Zeng Huajun, Chen Zheng, et al. Optimizing Web Search Using Web Click-through Data// Proc of the 13th ACM International Conference on Information and Knowledge Management. Washington, USA, 2004:118-126.
  • 8Furnas G W,Landauer T K,Gomez L M,et al.The Vocabulary Problem in Human-system Communication[J].Communications of the ACM.1987,30(11):964-971.
  • 9Bergman O,Marom R B,Nachmias R.Improved Search Engines and Navigation Preference in Personal Information Management[J].ACM Trans.on Information Systems,2008,26(4): 1-24.
  • 10Deerwester S,Dumais S T,Furnas G W,et al.Indexing by Latent Semantic Analysis[J].Journal of the American Society for Information Science.1990,41(6):391-407.

共引文献76

同被引文献17

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部