期刊文献+

多时滞模糊系统的非易碎镇定 被引量:1

Non-fragile Stabilization of Uncertain Fuzzy Systems with Multi-delay
下载PDF
导出
摘要 以T—S模糊模型为研究对象,研究了一类多时滞模糊系统的非易碎镇定问题。通过分析多时滞模糊系统,结合非易碎镇定的特点,以T—S模糊模型为研究对象,采用了线性矩阵不等式方法,解决了系统的稳定性问题,并且给出了相应的状态反馈控制器。数值算例借助于Matlab中的LMI工具箱,通过编程求解得出控制器增益矩阵,从而验证了所得结论。 The non-fragile stabilization of uncertain fuzzy systems with multi-delay for the T—S fuzzy systems is studied.Based on the linear matrix inequality and the characteristic of non-fragile stabilization,this paper solves the problem of non-fragile control for T—S fuzzy systems with multi-delay,and designs the corresponding state feedback controller.Some numerical examples are given to show the effectiveness of the proposed results.By using the Matlab LMI tool box,the control gains are obtained.
作者 徐颖
出处 《淮海工学院学报(自然科学版)》 CAS 2011年第4期34-37,共4页 Journal of Huaihai Institute of Technology:Natural Sciences Edition
关键词 T—S模糊系统 多时滞 不确定系统 非易碎镇定 线性矩阵不等式 T—S fuzzy systems multi-delay uncertainty of controller non-fragile stabilization linear matrix inequality
  • 相关文献

参考文献9

  • 1TAKAGI T,SUGENO M. Fuzzy identification of systems and its application to modeling and control[J]. IEEE Transactions on Systems Man & Cybern, 1985. 15(2): 116-132.
  • 2HO J L,JlN B P,CHEN Guanrong. Robust fuzzy control of nonlinear systems with parametric uncertainties [J]. IEEE Transactions on Fuzzy Systems, 2001,9 (2): 369-379.
  • 3LI Xi,SOUZA DE C E. Delay-dependent robust stabilization of uncertain linear delay systems: a linear matrix inequality approach[J]. IEEE Transactions on Automat Control, 1997,42 (13): 1144-1148.
  • 4刘亚,胡寿松.基于模糊模型的时滞不确定系统的模糊H_∞鲁棒反馈控制[J].控制理论与应用,2003,20(4):497-502. 被引量:14
  • 5PARK J H. Robust nonfragile decentralized controller design for uncertain large-scale interconnected systems with-delays[J]. Journal of Dynamic Systems, Measurement and Control, 2002(2):332-336.
  • 6JADBABAIE A, CHAOUKI T A, ABDALAH, et al. Robust non-fragile and optimal controller design via linear matrix inequalities[C]. Proceedings of the American Control Conference, 1998(5): 2842-2846.
  • 7吴静杰,李永明.模糊控制系统的镇定性能[J].陕西师范大学学报(自然科学版),2004,32(4):9-11. 被引量:2
  • 8周林娜,张庆灵,胡跃冰,杨春雨.T-S模糊系统的稳定性分析与镇定控制器设计[J].控制理论与应用,2007,24(6):886-890. 被引量:4
  • 9ZHOU Shaosheng, LAM J. Robust stabilization of delayed singular systems with linear fractional parametric uncertainties[J]. Circuits Systems Signal Processing, 2003,12(6): 579-588.

二级参考文献22

  • 1TAKAGI T, SUGENO M. Fuzzy identification of systems and its applications to modeling and control [ J ]. IEEE Trans on Systems,Man and Cybernetics, 1985,15(1):116-163.
  • 2LEE H J, PARK J B, CHEN G. Robttst fuzzy control of nonlinear system with parametric uncertainties [ J ]. IEEE Trans on Fuzzy Systems, 2001,9(2) : 369 - 379.
  • 3WANG H O, TANAKA K, GRIFFIN M F. An appruach to fuzzy control of nonlinear systems: stability and design issues[J].IEEE Trans on Fuzzy Systems, 1996,4( 1 ) : 14 - 23.
  • 4WONG L K, LEUNG F H F, TAM P KS. Fuzzy model-based controller for inverted pendulum [ J ]. Eelctron Letters, 1996, 32(18) :1683 - 1685.
  • 5LIJ, WANG HO, NIEMANN D, et al. Dynamic parallel distributed compensation for Takagi-Sugeao fuzzy systems: An LMI approach[J]. Information Sciences, 2000,123(3,4) :201 - 221.
  • 6JEUNG E T, KIM JH, PARKH B. H∞ output feedback controllers for time delay systems [J]. IEEE Trans on Automatic Control, 1998,43(7) :971 - 974.
  • 7Buckley J J, Feuring T. Universal approximation for fuzzy functions [J]. Fuzzy Sets and Systems, 2000,113(3):411-415.
  • 8Cao S G, Rees N W, Feng G. Mamdani-type fuzzy controllers are universal fuzzy controllers [J]. Fuzzy Sets and Systems, 2001,123(3):359-367.
  • 9Cao S G, Rees N W, Feng G. Analysis and design for a class of complex control systems part I: fuzzy modeling and identification [J]. Automatica, 1997, 33(6): 1 019- 1 028.
  • 10Vidyasagar M. Nonlinear systems analysis [M]. New Jersey: Prentice Hall Englewood Cliffs, 1993.

共引文献16

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部