期刊文献+

土体各向异性边界面模型隐式算法在ABAQUS软件中的实现 被引量:5

On implicit integration of anisotropic bounding surface model for soils in ABAQUS software
原文传递
导出
摘要 基于Wheeler土体各向异性旋转硬化法则,结合边界面理论,构造一个能够反映土体初始各向异性及加载后应力诱发各向异性的边界面本构模型,并借助ABAQUS软件提供的UMAT子程序接口,采用隐式积分算法——图形返回算法实现。通过对正常固结状态下(OCR=1)高岭土试样三轴不排水剪切试验进行模拟,并将模拟结果与ABAQUS自带的修正剑桥模型模拟结果进行了比较分析,表明本模型的模拟结果能够反映土体在偏压加载过程中产生的各向异性现象。在此基础上,采用本模型对中等超固结(OCR=4)高岭土试样三轴不排水剪切试验进行模拟,并再次与ABAQUS自带的修正剑桥模型模拟结果进行比较,表明本模型能够较好地反映中等超固结土在小应变情况下的非线性特性。相比于经典弹塑性模型,如修正剑桥模型,本模型的模拟结果更符合中等超固结土的变形特性。 An anisotropic bounding surface model for cohesive soils is developed based on Wheeler's rotational hardening law (S-CLAY1 Model), which is integrated in return mapping algorithm. The UMAT subroutine of the developed model is programmed in ABAQUS software. With the developed model, the numerical simulation of undrained triaxial compression test for normal consolidated kaolin clay (OCR =1) is implemented, and the numerical results of the developed model compared with the Modified Cam-clay model in ABAQUS. The results show that the developed anisotropic bounding surface model could efficiently depict the stress-strain behaviors and change of excess pore pressure of normally consolidated clay. Meanwhile the developed model could reproduce anisotropic behaviors of soft clay under loading conditions. Then the similar numerical simulation for over consolidated kaolin clay (OCR =4) is implemented. The results show that the developed model could also efficiently depict nonlinear stress-strain behaviors of over consolidated clay under small deformation conditions.
作者 钦亚洲 孙钧
出处 《岩土力学》 EI CAS CSCD 北大核心 2012年第1期307-313,共7页 Rock and Soil Mechanics
关键词 土体各向异性边界面模型 图形返回算法 ABAQUS软件 UMAT接口 anisotropy bounding surface model for soil return mapping algorithm ABAQUS software UMAT interface
  • 相关文献

参考文献15

  • 1ANANDARAJAH A, DAFALIAS Y F. Bounding surface plasticity. III: Application to anisotropic cohesive soils[J]. Journal of Engineering Mechanics, 1986, 112(12): 1292-1318.
  • 2LING H I, YUE D Y, KALIAKIN V N, et al. Anisotropic elastoplastic bounding surface model for cohesive soils[J] Journal of Engineering Mechanics, 2002, 128(7): 748 -758.
  • 3WHEELER S J, NAATANEN A, KARSTUNEN, et al An anisotropic elastoplastic model for soft clays[J] Canadian Geoteehnieal Journal, 2003, 40(2): 403- 418.
  • 4HUANG J S, GRIFFITHS D V. Return mapping algorithms and stress predictors for failure analysis in geomechanics[J]. Journal of Engineering Mechanics,ASCE, 2009, 135(4): 276-284.
  • 5SIMO J C, TAYLOR R L. Consistent tangent operators for rate-independent elastoplasticity[J]. Computer Methods in Applied Mechanics and Engineering, 1985, 48(3): 101- 118.
  • 6BELYTSCHKO T, LIU W K, MORAN B. Nonlinear finite elements for continua and structures[M]. New York:John Wiley & Sons, Ltd, 2000.
  • 7DAFALIAS Y F. Bounding surface plasticity. I : Mathematical foundation and hypoplasticity[J]. Journal of Engineering Mechanics, 1986, 112(9): 966- 987.
  • 8DAFALIAS Y F, HERRMANN L R. Bounding surface plasticity (II): Application to isotropic cohesive soils[J]. Journal of Engineering Mechanics, 1986, 112(12): 1263-1291.
  • 9MANZARI M T, NOUR M A. On implicit integration of bounding surface plasticity models[J]. Computers & Structures, 1997, 63(3): 385-395.
  • 10费康,刘汉龙.边界面模型在ABAQUS的开发应用[J].解放军理工大学学报(自然科学版),2009,10(5):447-451. 被引量:18

二级参考文献7

  • 1KRAMER S L, PAULSEN S B. Practical use of geotechnical site response models[C]. Proceedings of International Workshop on Uncertainties in Nonlinear Soil Properties and their Impact on Modeling Dynamic Soil Response[A]. Berkeley :University of California, 2004 : 162-165.
  • 2PAPADIMITRIOU A G, BOUCKOVALAS G D, DAFALIAS Y F. Plasticity model for sand under small and large cyclic strains[J].Journal of Geoteeh- nical and Geoenvironmental Engineering, ASCE, 2001,127(11) : 973-983.
  • 3ELGAMAL A, YANG Z, PARRA E. Computational modeling of cyclic mobility and post-liquefaction site response[J]. Soil Dynamics and Earthquake Engineering, 2002,22(4) 1259-271.
  • 4DAFALIAS Y F, MANZARI M T. Simple plasticity sand model accounting for fabric change effects[J]. Journal of Engineering Mechanics, ASCE, 2004, 130(6) : 622-634.
  • 5Hibbitt, Karlsson & Sorensen, Inc. ABAQUS userrs manuals version 6.3 [M]. Rhode Island: Hibbitt, Karlsson & Sorensen, Inc, 2002.
  • 6MANZARI M T, NOUR M A. On implicit integration of bounding surface plasticity models[J].Computers &Structures, 1997,63 (3) : 385-392.
  • 7刘汉龙,余湘娟.土动力学与岩土地震工程研究进展[J].河海大学学报(自然科学版),1999,27(1):6-15. 被引量:37

共引文献17

同被引文献38

  • 1徐远杰,王观琪,李健,唐碧华.在ABAQUS中开发实现Duncan-Chang本构模型[J].岩土力学,2004,25(7):1032-1036. 被引量:73
  • 2孙吉主,王勇,孔令伟.湛江海域结构性软土的边界面损伤模型研究[J].岩土力学,2006,27(1):99-101. 被引量:10
  • 3孙吉主,周健.土的边界面本构模型研究进展[J].岩土力学,1997,18(2):91-96. 被引量:2
  • 4Dafalias YF. Bounding surface plasticity. I: mathemati- cal foundation and hypoplasticity. Journal of Engineering Mechanics, 1986, 112(9): 966-987.
  • 5Dafalias YF, Herrmann LR. Bounding surface plasticity. II: application to isotropic cohesive soils. Journal of Engi- neering Mechanics, 1986, 112(12): 1263-1291.
  • 6Anandarajah A, Dafalias YF. Bounding surface plasticity. III: application to anisotropic cohesive soils. Journal of Engineering Mechanics, 1986, 112(12): 1292-1318.
  • 7Wheeler S J, Naatanen A, Karstunen, et al. An anisotropic elastoplastic model for soft clays. Canadian Geotechnical Journal, 2003, 40(2): 403-418.
  • 8Crouch RS, Wolf JP. On a three-dimensional anisotropic plasticity model for soil. Geotechnique, 1995, 45(2): 301- 305.
  • 9Taiebat M, Dafalias YF. Simple yield surface expressions appropriate for soil plasticity. International Journal of Ge- omechanics, ASCE, 2010, 10(4): 161-169.
  • 10Ling HI, Yue DY, Kaliakin VN, et al. Anisotropic elasto- plastic bounding surface model for cohesive soils. Journal of Engineering Mechanics, 2002, 128(7): 748-758.

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部