期刊文献+

基于内部流场分析的小型轴流风扇结构优化 被引量:2

Small Axial Fan Structure Optimization Research Based on the Analysis of the Internal Flow Field
下载PDF
导出
摘要 采用孤立叶型设计法、CFD技术、遗传算法等理论,运用自编软件对某一轴流风扇轮毂比参数进行结构优化设计,优化目标为风扇流量。对比分析优化前后风扇内部流场,如风扇的静特性、叶片表面静压分布、子午面涡量分布等信息。由此验证优化方法的可行性,并总结轮毂比参数对此风扇性能的影响。结果表明:优化后风扇叶片和轮毂表面减小了因涡流带来的能量损失,但叶顶间隙处的涡流增大,能量损失略有增大;在不同流量下,优化后风扇静压有不同程度的提高;优化后风扇的出口速度均比优化前大幅提高;风扇在额定工况下性能、静特性及内部流场都得到了很好的改善。 In the paper, the authors apply theories of isolated blade design method, CFD technology,genetic algorithm, and use self-made software to optimize the hub ratio of axial flow fan. The optimization objective is fan flow. Then the authors comparatively analyze the fan internal flow field, including static characteristic, blade surface static pressure distribution and meridian plane vortex quantity distribution, etc. , to make sure the feasibility of this optimization method, and conclude the effect of hub ratio to the fan performance. The results show that the energy loss brought by vortex is reduced on fan blades and hub surface after optimization, while the vortex and energy loss on tip are increased slightly. In different flow,there are varied improvements on fan static pressure and outlet velocity after optimization. Under the rating conditions, the fan performance, static characteristic and internal flow field have good improvement.
出处 《浙江理工大学学报(自然科学版)》 2012年第1期89-93,共5页 Journal of Zhejiang Sci-Tech University(Natural Sciences)
基金 国家自然科学基金(50735004)
关键词 轴流风扇 轮毂比 内部流场 遗传算法 axial faro hub ratio internal flow field genetic algorithm
  • 相关文献

参考文献5

二级参考文献18

  • 1岳国强,韩万金.掠叶片对涡轮叶栅气动性能的影响[J].推进技术,2004,25(6):512-516. 被引量:7
  • 2李晓鹏,李剑波,吴克启.空调用轴流风机内流分析及性能优化[J].流体机械,2006,34(3):11-14. 被引量:6
  • 3张秋鸿,张玮.前掠叶片叶栅内二次流动的数值研究[J].汽轮机技术,2006,48(2):119-120. 被引量:1
  • 4Mengistu T,Ghaly W.Single and multipoint shape optimization of gas turbine blade cascades[C].Collection of Technical Papers-10thAIAA/ISSMO Multidisciplinary Analysis and Optimization Conference.Albany,NY,United States:AIAA,2004:1652-1662.
  • 5Vascellari M,Denos R,Van Den B R.Design of a transonic high-pressure turbine stage 2D section with reduced rotor/stator interaction[C].Proceedings of the ASME Turbo Expo 2004.Vienna,Austria:ASME,2004:1533-1543.
  • 6Demeulenaere A.Liqout A.Dijkers R,et al.Design and optimization of an industrial pump:Application of genetic algorithms and neural network[C].Proceedings of the American Society of Mechanical Engineers Fluids Engineering Division Summer Conference 2005.Houston,TX,United States:ASME,2005:1519-1527.
  • 7Demeulenaere A,Liqout A,Hirsch C.Application of multipoint optimization to the design of turbomachinery blades[C].Proceedings of the ASME Turbo Expo 2004.Vienna,Austria:ASME,2004:1481-1490.
  • 8Islek A A.Optimization of micro compressor blades using CFD analysis and artificial intelligence[C].Proceedings of the ASME/JSME Joint Fluids Engineering Conference.Honolulu,HI,United States:ASME,2003:2139-2146.
  • 9Yamaguchi N,Tominaga T.Mitsubishi T.Secondary loss reduction by forward skewing of axial compressor rotor blading[C].Proceedings of 1991 Yokohama International Gas Turbine Congress.Yokohama,Japan:IGTC,1991:61-68.
  • 10Sasaki T,Breugelmans F.Comparison of sweep and dihedral effects on compressor cascade performance[J].Journal of Turbomachinery Transactions of ASME,1998,120(3):454-464.

共引文献23

同被引文献19

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部