摘要
应用Manásevich-Mawhin重合度定理,研究了形如:(φp(x′(t)))′+f(t,x(t-τ(t)),x′(t-σ(t)))+β(t)g(t,x(t-τ(t)))=e(t),的Rayleigh型p-Laplace多时滞微分方程.在β(t)可变号情形下,得到了一个关于周期解存在性的结果.
By using Mandsevich-Mawhin continuation theorem, a class of Rayleigh type p- Laplacian differential equation with multiple deviating arguments of the form (φp(x'(t)))'+f(t,x(t-τ(t)),x't(t-σ(t)))+β(t)g(t,x(t-γ(t)))=e(t),is studied. Under the case that the sign of coefficientβ(t) can be changed, a result on the existence of periodic solutions is obtained.
出处
《安徽师范大学学报(自然科学版)》
CAS
北大核心
2011年第6期516-521,共6页
Journal of Anhui Normal University(Natural Science)
关键词
周期解
存在性
重合度定理
多偏差项
periodic solutions
existence
continuation theorem
multiple deviating arguments