期刊文献+

基于减法聚类的GK模糊聚类研究 被引量:12

Research on GK Fuzzy Clustering Algorithm Based on Subtractive Clustering
下载PDF
导出
摘要 Gustafson-Kessel(GK)算法是目前应用最广泛的模糊聚类算法之一.但是它对初值的设置非常敏感,容易陷入局部最优解;该算法还必须事先给定聚类个数,自我调节能力差.针对GK算法上述缺点,采用减法聚类对GK聚类算法进行初始化,初值设置更能反映数据集结构;基于减法聚类提供的初值,采用聚类有效性函数确定合理的聚类类别数,以达到自动分类的效果能给出较为合理的聚类划分结果.通过对人工数据集和iris数据集的仿真实验,表明改进算法在自动确定合理聚类类别数的同时,聚类正确率明显提高. Gustafson-Kessel(GK) algorithm is one of the most widely used fuzzy clustering algorithms.But this algorithm is hypersensitive to the setting of the initial value and is easy to fall into local optimal solution.What's more,GK algorithm requires a given clustering number.It is poor at self-adjustment.In view of the above shortcomings of GK algorithm,we adopt the subtractive clustering algorithm to initialize the GK algorithm,which can reflect the data structure better.Based on the initial value applied by the subtractive clustering algorithm,we adopt the clustering validity function to determine the reasonable clustering number in order to achieve the automatic classification and reasonable clustering partitioning results.Finally,the simulation experiments to the artificial data set and the iris data set demonstrated that the improved algorithm can automatically determine the reasonable clustering number and the clustering correctness increased obviously.
作者 蔡威 程俊杰
出处 《兰州交通大学学报》 CAS 2011年第6期50-54,共5页 Journal of Lanzhou Jiaotong University
关键词 GK聚类 减法聚类 密度 聚类有效性函数 自动确定 GK clustering subtractive clustering density clustering validity function automatic determination
  • 相关文献

参考文献8

  • 1Gustafson D,Kessel W C. Fuzzy clustering with a fuzzy covariance matrix[J]. Proceedings of IEEE CDC, San Diego, CA, 1979:761-766.
  • 2Atefeh D. Parameter esti-mation of K-distributed sea clutter based on fuzzy inference and Gustafson-Kessel clustering[J]. Fuzzy Sets and Systems, 2010, 163 ( 1 ) : 45-53.
  • 3Silva L, Gomide F, Yager IL Partici-patory learning in fuzzy clustering[J]. Fuzzy Systems, 2005: 856-861.
  • 4Chiu S L. Fuzzy model identification based on cluster estimation[J]. Journal of Intelligent and Fuzzy Systems, 1994,2(3) : 267-278.
  • 5Wen-Yuan Liu, Chun-Jing Xiao. Study on combining subtractive cluster-ing with fuzzy c-means clustering [J]. Machine Learing and Cybernetics, 2003, 5 (5): 2659-2662.
  • 6孙才志,王敬东,潘俊.模糊聚类分析最佳聚类数的确定方法研究[J].模糊系统与数学,2001,15(1):89-92. 被引量:85
  • 7范九伦,裴继红,谢维信.基于可能性分布的聚类有效性[J].电子学报,1998,26(4):113-115. 被引量:41
  • 8张栒,邓辉文.基于减法聚类与聚类有效性评判的FCM聚类[J].重庆工学院学报,2006,20(5):59-62. 被引量:10

二级参考文献18

  • 1吴成茂,范九伦.基于类内差和改进划分系数的聚类有效性函数[J].系统工程与电子技术,2004,26(8):1090-1093. 被引量:6
  • 2张伟.Fuzzy聚类算法中的一个新算法--Fuzzy PFS聚类法[J].模糊数学,1987,3(4):51-56.
  • 3Xie X L,IEEE Trans Pattern Anal Mach Intell,1991年,13卷,8期,841页
  • 4张伟,模糊数学,1987年,3卷,4期,51页
  • 5Dunn J C.A fuzzy relative of the ISODATA process and its use in detecting compact well separated cluster[J].J Cybernet,1974,3:32-57.
  • 6Bezdek J C.Pattem Recognition with Fuzzy Objective Function Algorithms[M].New York:Plenum Press,1981.
  • 7Pal N R,Bezdek J C.On cluster validity for the fuzzy cmeans model[J].IEEE Trans.Fuzzy Systems.1995,3 (3):370-379.
  • 8Xie X L,Beni G A.Validity measure for fuzzy clustering[J].IEEE Trans.Pattern And Machine Intelligence,1982,3(8):357-363.
  • 9James C,Bezdek.Some new indexes of clustering validity[J].IEEE Trans on Systems,Man,and Cybernetics,1998,28(3):301-315.
  • 10Chiu S L.~ Fuzzy model identification based on cluster estimation[J].Journal of Intelligent and Fuzzy Systems,1994,2(3):267-278.

共引文献128

同被引文献114

引证文献12

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部