期刊文献+

基于角点检测的快速匹配算法 被引量:9

Fast Matching Algorithm Based on Corner Detection
下载PDF
导出
摘要 针对复杂图像的快速匹配,提出基于Shi-Tomasi角点检测的特征匹配算法。依据图像的角点特征、图像灰度和位置信息,采用最大互相关函数进行相似度计算和粗匹配,用随机样本一致性算法对匹配点对进行校正并消除错误匹配。将该算法应用于实景照片拼接,实验结果表明,对存在较大色差和形变的图像,其匹配精度为97%左右,匹配精度和速度均优于传统匹配算法。 In view of the fast image registration of complicated images,a matching algorithm based on Shi-Tomasi corner detection is described.The max correlation function is used for similarity computation and rough matching according to the corner features,image gray and location information of the images.Random sample consensus method is used for revising matching points and removing false matching.The algorithm is applied to real photo stitching.Experimental results show that the matching accuracy of this algorithm is about 97% for images with chromatic aberration or deformation and outperforms traditional point matching algorithms both in matching accuracy and running speed.
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2011年第6期755-758,共4页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(60875010)
关键词 角点检测 特征匹配 角点特征 图像灰度 位置信息 互相关函数 corner detection feature matching graphic point features gray-level pixel location information correlation function
  • 相关文献

参考文献9

  • 1冈萨雷斯.数字图像处理[M].阮秋奇,阮宇智,译.2版.北京:电子工业出版社,2009.
  • 2Papakostas G A, Karakasis E G, Koulouriotis D E. Novel moment invariants for improved classification performance in computer vision applications [ J ]. Pattern Recognition. 2010,43 ( 1 ) :58-68.
  • 3Zunic J, Hirota K, Rosin P L. A Hu moment invariant as a shape circularity measure [ J ]. Pattern Recognition, 2010, 43 ( 1 ) ,47 -57.
  • 4Goncalves H, Goncalves J A, Corte-Real L. HAIRIS: A method for automatic image registration through histogram-based image segmentation [ J ]. IEEE Transactions on Image Processing,2011,20(3) :776-789.
  • 5Chae K Y,Dong W P,Jeong C S. SUSAN window based cost calculation for fast stereo matching [ J ]. Lecture Notes in Computer Science ,2005,38 (2) :947-952.
  • 6Shi J, Tomasi C. Good features to track [ A ]. Proceedings CVPR' 94 [ C ]. Seattle, USA: Computer Vision and Pattern Recognition, 1994:593-600.
  • 7林学晶.视频图像拼接技术研究[D].南京:南京理工大学计算机科学与技术学院,2005.
  • 8汪华琴.基于特征点匹配的图像拼接方法研究[M].武汉:华中师范大学出版社,2007.
  • 9滕飞,王惠南,盛庆红.基于相对点矩的SAR图像匹配算法[J].电子设计工程,2011,19(6):146-149. 被引量:2

二级参考文献14

  • 1冷雪飞,刘建业,熊智,邢广华.加权Hausdorff距离算法在SAR/INS景象匹配中的应用[J].控制与决策,2006,21(1):42-45. 被引量:16
  • 2于秋则,程辉,柳健,田金文,关世义.基于改进Hausdorff测度和遗传算法的SAR图像与光学图像匹配[J].宇航学报,2006,27(1):130-134. 被引量:31
  • 3LIU Rui-hua, WANG Yang-uang. SAR image matching base on speeded up robust feature[C]. Xiamen :WRI Global Congress on Intelligent Systems, 2009:19-21.
  • 4ZHENG Jian, BAI Xian-zhen, ZHAO Xiao-sheng. SAR image matching based on fractal theory [C]//7th International Conference on Signal Processing, 2004.
  • 5LOWED G. Distinctive image features from scale-invariant features[J]. International Journal of Computer Vision, 2004, 60(2):91-110.
  • 6Hu M K. Visual pattern recognition by moment invariants[J]. IRE Trans Information Theory, 1962(8): 179-187.
  • 7FU Yan, WANG Mei,ZHANG Chun-qin, SAR image target recognition based on hu invariant moments and SVM [C] //Xi'an: Fifth International Conference on Information Assurance and Security, 2009:18-20.
  • 8XIAO Luo-zhou, HUI Ping-liu, SHOU Dong-zhu,et al.Research on matching of the remote sensing image matching based on histogram invariant moments and genetic algorithms [C] // Wuhan: International Conference on Information Engineering and Computer Science, 2009: 19-20.
  • 9Wong Y R. Scene matching with invariant moments [J]. Computer Graphics and linage Processing, 1978(8):16- 24.
  • 10SHI J, TOMASI C. Good features to track [C]//9th IEEE Conference on Computer Vision and Pattern Recognition, 1994.

共引文献2

同被引文献62

  • 1王宏力,贾万波.图像匹配算法研究综述[C] //全国第19届计算机技术与应用(CACIS)学术会议论文集(上册).合肥:中国科学技术大学出版社,2008:418-422.
  • 2Gamal ElMasry, Sergio Cubero, Enrique Moha. In-line sorting of irregular potatoes by using automated computer-based machine vision system [J]. Journal of Food Engineering,2012,112 : 60 -68.
  • 3Ming J Tsai, Lee Hongwen, Ann Naijun. Machine vision based path planning for a robotic golf club head welding system [ J ]. Robotics and Computer-Integrated Manufacturing,2011, 27 : 843 - 849.
  • 4Huang W, Kovacevic R. Development of a real-time laser-based machine vision system to monitor and control welding processes [ J]. Int J Adv Manuf Technol,2012, DOI: 10. 1007/s00170-012-3902-0.
  • 5Zhang Z Y. A flexible new technique for camera calibration[ J ]. IEEE Transactions on Pattern Analysis ahd Machine Intelligence, 2000, 22 (11) : 1330-1334.
  • 6Shriram K Vasudevan, Dharmeudra T, Sivaraman R, et al. Automotive Image Processing Technique Using Canny' s Edge Detector [J]. International Journal of Engineering Science and Technology, 2011, 2 (7) :2632 - 2643.
  • 7黄石安,朱日宏,杨章静.基于数字图像处理的圆形[D].南京:南京理工大学,2006.
  • 8Gary Bradski,Adrian Kaehler.学习OpenCV[M].北京:清华大学出版社,2008.
  • 9NIKHIL NAIKAL ALLEN,YANG Y,SHANKAR S.Informative Feature Selection for Object Recognition via Sparse PCA[C //Computer Vision (ICCV),2011 IEEE International Conference on.Barcelona:[s.n.] ,2011:818-825.
  • 10HANG Xin,JI Xiuhua.An Improved Harris Comer Detection Algorithm for Noised Images[J] .Advanced Materials Research,2012,1566(433):6151-6156.

引证文献9

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部