期刊文献+

六阶图G与S_n的积图的交叉数 被引量:2

The Crossing Numbers of a 6-vertex Graph G Products S_n
下载PDF
导出
摘要 确定图的交叉数是NP-完全问题.目前已确定交叉数的六阶图与星图的笛卡尔积图极少,本文确定了一个六阶图G与星图S_n积图的交叉数为Z(6,n)+2n+[n/2]. Determining the crossing number of an arbitrary graph is NP-complete problem.Only a few crossing number of Cartesian products of the graph order 6 and stars had been determined. In this paper, we obtain the conclusion that cr(G × Sn) = Z(6,n)+2n+[n/2].
出处 《数学研究》 CSCD 2011年第4期411-417,共7页 Journal of Mathematical Study
基金 湖南省教育厅资助项目(11C0981) 国家自然科学基金资助项目(10771062)
关键词 交叉数 笛卡尔积图 六阶图 星图 Metacyclic p-groups Extraspecial p-groups Maximal subgroup
  • 相关文献

参考文献10

  • 1J.A. Bondy, U.S.R. Murty. Graph theory with application. New York: Macmillan London and Elsevier, 1979.
  • 2Garey M R, Johnson D S. Crossing number is NP-complete. SIAM J. Alg. Disc.Meth., 1983, 4(3):312-316.
  • 3Kleitman D J. The crosing number of K5,n. J.Graph Series B, 1970, 9:315-323.
  • 4Huang Y Q, Zhao T L. The crossing number of K1,4,n. Disc.Math, 2008, 308(9):1634-1638.
  • 5BOKAL D. On the crossing numbers of Cartesian products with trees. J Graph Theory, 2007, 56:287-300.
  • 6M. Klesc. The join of graphs and crossing nembers. Discrete Mathematics, 2007, (23), 349-355.
  • 7M. Klesc. The crossing numbers of products of path and stars with 4-vertex graphs [J]. J.Graph Theory. 18(6)(1994), 605-614.
  • 8M. Klesc. The crossing numbers of Cartesian products of paths with 5-vertex graphs [J].Discrete Mathematics. 233(2001), 353-359.
  • 9吕胜祥,黄元秋.K_(2,4)×S_n的交叉数[J].系统科学与数学,2010,30(7):929-935. 被引量:11
  • 10张莉茜,李波,黄元秋.关于六阶图与星的笛卡儿积交叉数[J].湖南文理学院学报(自然科学版),2008,20(1):16-19. 被引量:2

二级参考文献5

共引文献11

同被引文献8

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部