期刊文献+

一类椭圆方程组解的存在性

Existence of Nontrivial Solutions of a Class of Elliptic Equations
下载PDF
导出
摘要 利用山路引理,获得了一类椭圆方程组非平凡解的存在性,推广了一些已有结果. We obtained existence of nontrivial solutions of a class of elliptic equations by applying mountain pass theorem, and extended some existing results.
出处 《南华大学学报(自然科学版)》 2011年第3期63-65,71,共4页 Journal of University of South China:Science and Technology
基金 湖南省自然科学基金资助项目(11JJ4006) 湖南省教育厅基金资助项目(09C852) 南华大学博士启动基金资助项目(5-2011-XQD-008)
关键词 椭圆方程组 变分方法 山路引理 elliptic equations variational method mountain pass lemma
  • 相关文献

参考文献7

  • 1Dinca G, Mawhin J, Jebelean J. A result of Ambrosetti-Rabinowitz type for p-Laplacian [ C ]. Singapore: World Sci- entific, 1995:231-242.
  • 2Clement P H, Garcia-Huidobro M, Manasevich R. Mountain pass type solutions for quasilinear elliptic equations [ J ]. Cal Var Partial Differential Equation,2000,11:33-62.
  • 3Chen Cai-sheng. On positive weak solutions for a class of quasilinear elliptic system [ J ]. Nonlinear Analysis, 2005, 62 : 751-756.
  • 4Tacksun Jung, Q-Heung Choi. Mountain pass geometry applied to the nonlinear mixed type elliptic problem [ J ].Korean J. Math. ,2009,4(17) :419-428.
  • 5Yang Yang, Jihui Zhang. Infnitely many mountain pass solutions on a kind of fourth-order neumann boundary value problem[ J]. Applied Mathematics and Computa- tion, 2009,213 : 262 -271.
  • 6周焕松.一个山路引理的应用[J].数学学报(中文版),2004,47(1):189-196. 被引量:7
  • 7陆文端.微分方程中的变分方法[M].成都:科学出版社,2002年.

二级参考文献13

  • 1Ambrosetti A., Rabinowitz P. H., Dual variational methods in critical points theory and applications, J. Funct.Anal., 1973, 14: 349-381.
  • 2Rabinowitz P. H., Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. in Math. No. 65, Amer. Math. Soc., Providence, R.I., 1986.
  • 3Brezis H., Nirenberg L., Positive solutions of nonlinear elliptic equation involving critical Sobolev exponents,Comm. Pure. Appl. Math., 1983, 36: 437-477.
  • 4Costa D. G., Magalha es C. A., Variational elliptic problems which are nonquadrotic at infinity, Nonli. Anal.TMA, 1994, 23: 1401-1412.
  • 5Jeanjean L., On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on RN, Proc. Royal. Soc. Edinburgh, Section A, 1999, 129A: 787-809.
  • 6Schechter M., Superlinear elliptic boundary value problems, Manuscripta Math., 1995, 86: 253-265.
  • 7Stuart C. A., Zhou H. S., A variational problem related to self-trapping of an electromagnetic field, Math.Methods in Applied Sciences, 1996, 19: 1397-1407.
  • 8Stuart C. A., Zhou H. S., Applying the mountain pass theorem to asymptotically linear elliptic equation on RN, Comm. in PDE, 1999, 24: 1731-1758.
  • 9Costa D. G., Miyagaki O. H., Nontrivial soluitons for perturbations of the p-Laplacian on unbounded domains,J. Math. Anal. Applications, 1995, 193: 737-755.
  • 10Mawhin J., Ward Jr. J., Willem M., Variational methods and semi-linear elliptic equations, Arch. Rat.Mech. Anal., 1986, 95: 269-277.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部