期刊文献+

考虑立交桥构型的二维交通流BML模型 被引量:2

A Two-Dimensional BML Model of Traffic Flow Considering Overpass Configuration
下载PDF
导出
摘要 考虑到现实二维路网中的立体交叉特性,本文在经典Biham-Middleton-Levine(BML)模型的路网结构中嵌入了一些典型的立交桥构型.通过改变立交桥的数量、分布构型,拓展了BML模型,以研究立交桥对路网交通流的整体影响.数值模拟表明,随机分布的立交桥构型,即盲目修建立交桥,在立交桥比例较低时,会对路网整体运行性能产生负面影响——加速拥堵.进一步将立交的分布进行适当地组织,形成真实反映城市路网特征的立交构型,如环形、方形.模拟发现,特定立交比例下方形立交构型对系统产生正面的影响,使得系统平均速度整体上要明显高于随机投放立交的状况;而环形立交构型投放至网络中,使得全局性堵塞提前发生,反而不能提高网络交通流的运行效率.这些结论虽与传统认知相悖,却具有较强的现实指导意义. Considering the widely existed grade separations in the two-dimensional urban road network, this paper incorporates some overpass configurations into the classic Biham-Middleton-Levine (BML) model, which has not yet been fully investigated. With the change of the overpass' s quantity and its configuration, the effect of overpass on the network performance is discussed based on the extended BML model. Using the numerical simulation, it is found that overpass newly built but without deliberate and reasonable plan, could only aggravate the existing congestion conditions, if the overpass ratio is low. Furthermore, the configurations of grouped overpass, which could reflect the realistic characteristics of overpass distribution in the road network, such as squared and loop-shaped configurations, are incorporated into the network. It is found that the squared configuration would bring positive effects on the network flow, while loop-shaped configuration bring negative effects on the network flow under certain conditions. The simulation results overthrow the conventional perception and have the extensive applicability and practical significance.
出处 《交通运输系统工程与信息》 EI CSCD 2011年第6期98-103,共6页 Journal of Transportation Systems Engineering and Information Technology
基金 国家自然科学基金(71071044) 教育部博士点基金课题(20110111120023)
关键词 交通工程 立交桥 二维路网 BML模型 交通流 traffic engineering overpass configuration two-dimensiona| road network BML model traffic flow
  • 相关文献

参考文献10

  • 1Nagel K,Schreckenberg M. A cellular automaton model for freeway traffic [J]. Journal of Physique. 1 ( France), 1992,2:221-229.
  • 2Kerner B S. The physics of traffic : empirical freewa~ pattern features, engineering applications, and theory [ M]. German: Springer, 2004.
  • 3Helbing D. Trafie and related self-driven many particle systems[J]. Reviews of Modern Physics. 2001 , 73 : 1067-1141.
  • 4Chowdhury D, Santen L, Schadschneider A. Statistical physics of vehicular traffic and some related systems[J]. Physics Reports, 2000, 329 (4-6) : 199-329.
  • 5Maerivoet S, Moor B D, Cellular automata models of road Traffic [J]. Physics Reports, 2005, 419 ( 1) : 1-64.
  • 6Biham O, Middleton A A, Levine D. Self-organization and a dynamical transition in traffic flow models [ J ] . Physical Review E, 1992 (10) : 6124-6127.
  • 7Fukui M, Oikawa H, Ishibashi Y. Flow of cars crossing with unequal velocities in a two-dimensional cellular automaton model [ J ]. Journal of the Physical Society of Japan, 1996, 65(8): 2514-2517.
  • 8Nagatani T. Anisotropic effect on jamming transition in traffic-flow[J ]. Journal of the Physical Society of Japan 1996, 62(8): 2656-2662.
  • 9刘小明,李颖宏,陈昱靦,郑淑晖,李正熙.基于改进BML模型的交通事故下路网交通运行状态分析[J].交通运输系统工程与信息,2010,10(2):122-129. 被引量:5
  • 10Nagatani T. Jamming transition in the traffic-flow model with two-level crossings [J]. Physical Review E, 1993, 48(5): 3290-3294.

二级参考文献7

  • 1陈若航,盛昭瀚.具有中心车站的元胞自动机城市交通流模型[J].系统工程学报,2006,21(5):539-543. 被引量:4
  • 2JoseA Cuesta, Froilan C Martinez, Juan M Molera, et al. Phase transit ion in twodimensional traffic flow model [ J ]. Phys Rev E, 1993,EA8(6) :4175 - 4178.
  • 3Nagatani T. Effect of jam-avoiding turn on jamming transition in two-dimensional traffic model [ J ]. J Phys Soc Jpn, 1994,63(4) : 1228- 1231.
  • 4Chung K H, Hui B M, Gu G Q. Two-dimensional traffic flow problems with faulty traffic lights[J]. Phys Rev, 1995, E51(1): 772- 774.
  • 5Benjamin S C, Johnson N F, Hui B M. Cellular automata models of traffic flow along a highway containing a junction [J]. J Phys, 1996, A29(12): 3119-3127.
  • 6Biham O, Middleton A A, Levine D. Self-organization and a dynamical transition in traffic flow models[J]. Phys Rev, 1992(10) :6124 - 6127.
  • 7陈军华,张星臣,赵凛,黄玲.基于元胞自动机的交叉口仿真平台研究[J].交通运输系统工程与信息,2009,9(1):68-73. 被引量:9

共引文献4

同被引文献49

  • 1孙舵,汪秉宏.红绿灯周期对二维交通流的影响及平均场理论[J].吉林大学学报(工学版),2009,39(S2):80-82. 被引量:2
  • 2尹凯弘,吴正,郭明旻.基于交通流实测数据的加速度研究[J].力学学报,2015,47(2):242-251. 被引量:2
  • 3CREMER M, LUDWIG J. A Fast Simulation Model for Traffic Flow on the Basis of Boolean Operations [ J ]. Mathematics and Computers in Simulation, 1986, 28 (4) : 297 - 303.
  • 4WOLFRAM S. Statistical Mechanics of Cellular Automata [J]. Reviews of Modern Physics, 1983, 55 (3) : 601 -644.
  • 5NAGEL K, SCHRECKENBERG M. A Cellular Automaton Model for Freeway Traffic [ J ]. Journal de Physique I, 1992, 2 (12): 2221-2229.
  • 6BIHAM O, MIDDLETON A A, LEVINE D. Self- organization and a Dynamical Transition in Traffic-flow Models [ J ] Physical Review A, 1992, 46 (10) : 6124 -6127.
  • 7NAGEL K, PACZUSKI M. Emergent Traffic Jams [ J]. Physical Review E, 1995, 51 (4) : 2909 -2918.
  • 8TAKAYASU M, TAKAYASU H. 1/f Noise in a Traffic Model [J]. Fractals, 1993, 1 (4): 860-866.
  • 9BENJAMIN S C, JOHNSON N F, HUI P M. Cellular Automata Models of Traffic Flow along a Highway Containing a Junction [ J ] Journal of Physics A: Mathematical and General, 1996, 29 (12): 3119- 3127.
  • 10BARLOVIC R, SANTEN L, SCHADSCHNEIDER A, et al. Metastable States in Cellular Automata for Traffic Flow [ J]. The European Physical Journal B-condensed Matter and Complex Systems, 1998, 5 (3) : 793 -800.

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部