期刊文献+

一种基于显著点和SVM相关反馈的图像检索方法 被引量:9

Method for Image Retrieval Based on Salient Points and SVM Relevance Feedback
下载PDF
导出
摘要 针对传统基于全局特征的图像检索方法存在的不足,提出一种基于显著点特征和SVM(support vector machine)相关反馈相结合的图像检索方法.显著点提取方法是对图像进行小波分解,选择粗分辨率下绝对值较大的小波系数,它们对应原图像中变化较大的区域,然后在细分辨率下跟踪这些小波系数,提取原图像中的能代表这些变化的点,即显著点;然后利用显著点的空间分布信息,提取显著点周围局部区域的特征进行检索,并对检索结果进行SVM相关反馈.实验结果表明,引入反馈的方法可有效地检索更多的相关图像,明显提高了检索的准确性. To solve the problem of the traditional image retrieval based on global features, a novel method for image retrieval based on salient points and SVM ( support vector machine ) relevance feedback is presented. Firstly, the images are decomposed using wavelet transform. We choose high wavelet coefficients in absolute value at a coarse resolution, because they correspond to a region with high global variations, then look at wavelet coefficients at finer resolutions to find the relevant points to represent the global variations. Then, the local feature of salient points is extracted for image retrieval, which utilizes the distribution information of salient points. ? Finally, the retrieval results are resorted using SVM relevance feedback. Experimental results show that the feedback method can retrieve more relevant images, improve the retrieval accuracy significantly.
出处 《小型微型计算机系统》 CSCD 北大核心 2012年第1期173-177,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61071173)资助
关键词 图像检索 小波显著点 SVM相关反馈 image retrieval wavalet-based salient points SVM relevance feedback
  • 相关文献

参考文献2

二级参考文献20

  • 1孟繁杰,郭宝龙.一种基于兴趣点颜色及空间分布的图像检索方法[J].西安电子科技大学学报,2005,32(2):256-259. 被引量:25
  • 2Schmid C,Mohr R.Local Grayvalue Invariants for Image Retrieval[J].IEEE Trans on PAMI,1997,19(5):530~535
  • 3Hu M K.Visual Pattern Recognition by Moment Invariants[J].IRE.Trans.Inf.Theory,1962,IT-8:179~187
  • 4Harris C,Stephens M.A Combined Corner and Edge Detector[A].Alvey Vision Conf[C].Manchester:Univ Manchester,1988:147~151
  • 5Bres S,Schettini R.Detection of Interest Points for Image Indexation[A].IEEE Conference on Image Processing[C].Netherland:Springer Verlag,1999:227~234
  • 6Han J,Ngan K N,Li Mingjing,et al.A memory learning framework for effective image retrieval[J].IEEE Transactions on Image Processing,2005,14(4):511-524
  • 7Cox I J,Miller M,Minka T P,et al.The Bayesian image retrieval system,PicHunter:theory,implementation,and psychophysical experiments[J].IEEE Transactions on Image Processing,2000,9(1):20-37
  • 8Jing Feng,Li Mingjing,Zhang Hongjiang,et al.A unified framework for image retrieval using keyword and visual features[J].IEEE Transactions on Image Processing,2005,14(7):979-989
  • 9Smeulders Arnold W M,Worring Marcel,Santini Simone,et al.Content-based image retrieval at the end of the early years[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(12):1349-1380
  • 10Rui Y,Huang T S,Mehrotra S.Relevance feedback:a powerful tool in interactive content-based image retrieval[J].IEEE Transactions on Circuits Systems for Video Technology,1998,8(5):644-655

共引文献14

同被引文献42

  • 1王崇骏,杨育彬,陈世福.基于高层语义的图像检索算法[J].软件学报,2004,15(10):1461-1469. 被引量:20
  • 2曲晓光,王国宇.基于显著点和关键块相结合的图像检索方法[J].计算机应用,2006,26(3):613-614. 被引量:4
  • 3曾智勇,张学军,崔江涛,周利华.基于显著兴趣点颜色及空间分布的图像检索新方法[J].光子学报,2006,35(2):308-311. 被引量:21
  • 4王鹏,于锦海.图像处理中卷积理论的数学基础[J].微计算机信息,2006(08S):209-210. 被引量:8
  • 5Datta R, Li J, Wang J Z. Content-based Image Retriev- al Approaches and Trends of the New Age [C].USA: Proceedings of the 7'h International Workshop on Mul- timedia Information Retrieval in Conjunction with ACM International Conference on Multimedia, Singa- pore, ACM, 2005: 253-262.
  • 6Koskela M, Laaksonen J, Oja E. Comparison of Tech- niques for Content-based Image Retrieval [C]. UK: Proceedings of the 12'h Scandinavian Conference on Image Analysis, 2001: 205-210.
  • 7Rouhollah R, Sally A, Zhang H, et al. Localized Con- tent-based Image Retrieval [J]. Transactions on Pat- tern Analysis and Machine Intelligence, 2008, 30(11): 1902-1912.
  • 8Sehimd C, Mohr R, Bauckhage C. Evaluation of inter- est point detectors [J]. International Journal of Com- puter Vision, 2000, 37(2): 151-172.
  • 9Wu Z B, Palmer M. Verb semantics and lexical selec- tion.In: Proceedings of the 32nd annual meeting on Association for Computational Linguistics[C]. Stroudsburg, PA: Association for Computational Lin- guistics, 1994:133-138.
  • 10Chen Y, Wang J Z. A Region-based Fuzzy Feature Matching Approach to Content-based Image Retriev- al [J]. IEEE Trans Pattern Analysis and Machine In- telligence, 2002, 24(9): 1252-1267.

引证文献9

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部