期刊文献+

一类三次曲线的形状分析 被引量:1

Shape analysis of class of cubic curves
下载PDF
导出
摘要 基于包络理论与拓扑映射的方法,对一类带有形状参数的三次曲线进行了形状分析,得出了曲线上含有奇点、拐点和曲线为局部凸或全局凸的充分必要条件,这些条件完全由控制多边形和形状参数所决定。进一步讨论了形状参数对形状分布图的影响及其对曲线形状的调节能力。 This paper considers the shape features of the class of cubic curves based on the theory of envelop and topological mapping.Necessary and sufficient conditions are derived for this curve having one or two inflection points,a loop or a cusp,or be locally or globally convex.Those conditions are completely decided by control polygon and the shape parameter.Furthermore,it discusses the influences of shape parameter on the shape distribution diagram and the ability for adjusting the shape of the curve.
出处 《计算机工程与应用》 CSCD 2012年第3期165-168,共4页 Computer Engineering and Applications
基金 湖南省教育厅资助科研项目(No.08B027)
关键词 三次曲线 形状参数 奇点 拐点 局部凸 全局凸 cubic curve shape parameter singularities inflection points local convexity global convexity
  • 相关文献

参考文献15

  • 1Farin G.Curves and surfaces for computer aided geometric de- sign[M].4th ed.New York:Academic Press, 1996.
  • 2Ball A A.CONSURF Part l:Introduction of the conic lofting ti- tle[J].CAD, 1974,6 (4) : 243-249.
  • 3吴晓勤.带形状参数的Bézier曲线[J].中国图象图形学报,2006,11(2):269-274. 被引量:58
  • 4Han X A,Ma Y C,Huang X L.A novel generalization of B6zier curve and surfaee[J].Journal of Computational and Applied Math- ematics, 2008,217 ( 1 ) : 180-193.
  • 5Yang Lianqiang,Zeng Xiaoming.Bezier curves and surfaces with shape parameters[J].J of Computer Mathematics, 2009, 86 (7) : 1253-1263.
  • 6刘植,陈晓彦,江平.带多形状参数的广义Bézier曲线曲面[J].计算机辅助设计与图形学学报,2010,22(5):838-844. 被引量:19
  • 7王成伟.三次Ball曲线的扩展[J].工程图学学报,2008,29(1):77-81. 被引量:26
  • 8Yang Q M,Wang G Z.Inflection points and singularities on C- curves[J].Computer Aided Geometric Design, 2004,21 ( 2 ) .. 207-213.
  • 9叶正麟,吴荣军.平面C-Bézier曲线的奇拐点分析[J].计算数学,2005,27(1):63-70. 被引量:15
  • 10Juhaisz I.On the singularity of a class of parametric curves[J]. Computer Aided Geometric Design,2006,23(2) : 146-156.

二级参考文献29

共引文献108

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部