期刊文献+

对称正则长波方程组的对称,精确解和守恒律 被引量:11

Exact solutions and conservation laws of symmetric regularized long wave equations
下载PDF
导出
摘要 通过利用修正的CK直接约化方法,建立了对称正则长波(SRLW)方程组的对称群理论。利用对称群理论建立了SRLW方程组的新旧解之间的关系,利用SRLW方程组的旧解得到了它们新的精确解。基于上述理论和SRLW方程组共轭方程组的解,得到了SRLW方程组的守恒律。 By using the modified direct reduction method presented by Clarkson and Kruskal, the symmetry group theorem of symmetric regularized long wave (SRLW) equations are derived. Some new exact solutions of SRLW equations are obtained by applying the theorem and given solutions. Conservation laws of the equations are also obtained with the corresponding Lie symmetry.
出处 《量子电子学报》 CAS CSCD 北大核心 2012年第1期21-26,共6页 Chinese Journal of Quantum Electronics
基金 国家自然科学基金 中国工程物理研究院联合基金资助(11076015)
关键词 非线性发展方程 精确解 守恒律 修正的CK直接约化方法 nonlinear evolution equation exact solutions conservation laws modified CK's direct reduction method
  • 相关文献

参考文献5

二级参考文献21

  • 1王明亮.BBM方程的孤立波解及其互相作用[J].兰州大学学报(自然科学版),1993,29(3):7-13. 被引量:13
  • 2田贵辰,刘希强.含外力项的广义变系数KdV方程的精确解[J].量子电子学报,2005,22(3):339-343. 被引量:26
  • 3董仲周,于西昌,王玲.非线性耦合KdV方程组的精确行波解[J].量子电子学报,2006,23(3):379-382. 被引量:15
  • 4Ibragimov N H. Infinitesimal method in the theory of invariants of algebraic and differential equations [J]. Not. South Afr. Math. Soc., 1997, 29: 61-70.
  • 5Ovsiannikov L V. Group Analysis of Differential Equations [M]. New York: Academic Press, 1982, 15-24.
  • 6Ibragimov N H, Torrisi M, Valenti A. Differential invariants of nonlinear equations [J]. Nonlinear Science and Numerical Simulation, 2004, 9(1):69-80.
  • 7Senthilvelan M, Torrisi M, Valenti A. Equivalence transformations and differential invariants of a generalized nonlinear Schrodinger equation [J]. Mathematics and General, 2006, 39(14): 3703-3713.
  • 8Tian Chou'. Applications of Lie Group Method to Partial Differential Equation [M]. Beijing: Science and Technology Press, 2001. 248-268.
  • 9Demiray H. A complex travelling wave solution to the KdV-Burgers equation [J]. Phys. Lett. A, 2005, 344(6): 418-422.
  • 10Hilmi D. A travelling wave solution to the KdV-Burgers equation [J]. Applied Mathematics and Computation, 2004, 154(3): 665-670.

共引文献44

同被引文献52

引证文献11

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部