期刊文献+

基于小波和过程神经网络的时序聚类分析 被引量:3

Time series clustering analysis based on wavelet and process neural networks
下载PDF
导出
摘要 针对时序背景下的聚类问题,提出一种基于小波和改进自组织过程神经网络的时序聚类方法,首先应用小波变换对原时序数据进行小波分解,在保留相关聚类特征的原则下,对信号进行重构;然后将重构信号拟合为时变函数作为过程神经网络的输入,应用改进的竞争算法训练自组织过程神经网络,利用过程神经网络输入为时变函数的特点,将经过小波处理后的时序信号特征充分考虑到聚类分析中,网络提取输入函数隐含的过程式模式特征并进行自组织,给出了改进的竞争学习算法;最后应用UCI数据集聚类结果表明,该方法在聚类正确率、网络运行时间和收敛速度上均有提高,同时在聚类质量、聚类速度方面表现出良好性能,能有效地应用于时序聚类。 For time series clustering problem,a method based on wavelet and improved self-organization process neural networks(PNN) was proposed.First,original time series data was decomposed by wavelet.Under the principle of reserving clustering characteristics,the signal was reconstructed.And then reconstructed signal fitted into time-varying functions was used as PNN's input.Self-organization PNN was trained by improved competition algorithm.Making use of time-varying input characteristic of PNN,the timing signal characteristics processed by wavelet has been considered adequately in clustering analysis.Network extracts implicit process mode characteristics of function to self organize.The improved competition learning algorithm was given.Finally,clustering result of UCI datasets shows that the proposed approach has an improvement in clustering accuracy,network runtime and convergence speed,at the same time shows good performance in clustering accuracy and clustering speed,can be applied to timing clustering effectively.
作者 葛利 印桂生
出处 《电机与控制学报》 EI CSCD 北大核心 2011年第12期78-82,共5页 Electric Machines and Control
基金 黑龙江省科技攻关计划项目(GC05A118) 哈尔滨市科技创新人才研究专项资金项目(2008RFQXG072)
关键词 时间序列 聚类分析 自组织过程神经网络 小波 time series clustering analysis self-organization process neural networks wavelet
  • 相关文献

参考文献11

二级参考文献50

共引文献77

同被引文献44

  • 1丁刚,徐敏强,侯立国.基于过程神经网络的航空发动机排气温度预测[J].航空动力学报,2009,24(5):1035-1039. 被引量:24
  • 2丁刚,钟诗胜.基于过程神经网络的时间序列预测及其应用研究[J].控制与决策,2006,21(9):1037-1041. 被引量:18
  • 3石洪山,张洪伟,武帅.基于遗传算法的支持矢量机及其在企业资源计划中的应用[J].计算机集成制造系统,2007,13(5):1030-1034. 被引量:1
  • 4陈果.用结构自适应神经网络预测航空发动机性能趋势[J].航空学报,2007,28(3):535-539. 被引量:30
  • 5ARUN Q, BELLE T. Mining blog stories using community- based and temporal clustering [ C ]//CIKM 06 Proceedings of the 15th ACM International Conference on Information and Knowledge Management. New York,USA, 2006: 58-67.
  • 6LIN Y R, HARI S, YUN C, et al. Splog detection using self-similarity analysis on blog temporal dynamics [ C ]//Pro- ceedings of the 3rd International Workshop on Adversarial Information Retrieval on the Web. New York, USA, 2007: 1-8.
  • 7LIM S H, KIM S W. Determining content power users in a blog network[ C]//Proceedings of the 3rd Workshop on Social Network Mining and Analysis. New York, USA,2009:52-59.
  • 8GILAD M, DAVID C. Blocking blog spare with language mod- el disagreement [ C ]//AIRWeb05. Chiba, 2005 : 11-15.
  • 9JONATHAN L. Retrieval and feedback models for blog feed search [ C ]//Proceedings of the 31 st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA,2008: 347-354.
  • 10SHRAVAN G, LI J. Micro-blog: sharing and querying content through mobile phones and social participation [ C ]//Proceedings of the 6th International Conference on Mobile Systems, Applications and Services. New York, USA,2008 : 174-186.

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部