期刊文献+

无金属粘结相硬质合金的电化学腐蚀行为 被引量:8

Electrochemical corrosion behaviors of binderless carbides
下载PDF
导出
摘要 采用1 700℃、20 MPa高温高压固相烧结工艺制备WC-0.5Cr3C2-0.3VC、WC-3.65TiC-2.45TaC-0.47Cr3C2-0.28VC和WC-6Mo2C-0.47Cr3C2-0.28VC等3种无金属粘结相硬质合金。采用CHI 660C电化学工作站研究在pH=1的H2SO4溶液、pH=7的Na2SO4溶液和pH=13的NaOH溶液中3种合金的电化学腐蚀行为。结果表明,在pH=1的H2SO4溶液和pH=7的Na2SO4溶液中WC-6Mo2C-0.47Cr3C2-0.28VC合金的耐腐蚀性能最好,在pH=13的NaOH溶液中WC-3.65TiC-2.45TaC-0.47Cr3C2-0.28VC的耐腐蚀性能最好。3种无金属粘结相硬质合金在pH=13的NaOH溶液中的耐腐蚀性能均优于其在pH=1的H2SO4溶液中的耐腐蚀性能。综合比较合金的硬度、耐腐蚀性能以及原材料价格,3种合金中WC-6Mo2C-0.47Cr3C2-0.28VC合金具有更佳的性价比。 The WC-0.5Cr3C2-0.3VC, WC-3.65TiC-2.45TaC-0.47Cr3Cz-0.28VC and WC-6Mo2C-0.47Cr3C2-0.28VC binderless carbides were prepared by solid phase sintering at the temperature of 1 700℃ and pressure of 20 MPa. Electrochemical corrosion behaviors were investigated in H2SO4 solution (pH=l), Na2SO4 solution (pH=7) and NaOH solution (pH=13). The results show that, WC-6Mo2C-0.47Cr3C2-0.28VC alloy exhibits the best corrosion resistance in H2SO4 solution (pH=1) and Na2SO4 solution (pH=7); while, WC-3.65TiC-2.45TaC-0.47Cr3C2-0.28VC alloy exhibits the best corrosion resistance in NaOH solution (pH=13). All the three alloys exhibit better corrosion resistance in NaOH solution (pH=13) than that in H2SO4 solution (pH=l). Considering the hardness, corrosion resistance and the cost of the raw materials of the alloys, WC-6Mo2C-0.47Cr3C2-0.28VC alloy is characterized with a higher performance price ratio among all the three alloys.
出处 《粉末冶金材料科学与工程》 EI 2011年第6期820-826,共7页 Materials Science and Engineering of Powder Metallurgy
基金 国家自然科学基金资助项目(51074189 50823006) 湖南省科技计划重点项目资助项目(2010FJ2006) 高等学校博士学科点专项科研基金资助项目(20100162110001) 国家科技重大专项资助项目(2009ZX04012-032 2011BAE09B02)
关键词 无金属粘结相 硬质合金 电化学腐蚀 Tafel曲线 Nyquist图谱 binderless carbide cemented carbide electrochemical corrosion Tafel curve Nyquist plot
  • 相关文献

参考文献19

  • 1TSAI K M. The effect of consolidation parameters on the mechanical properties of binderless tungsten carbide [J]. International Journal of Refractory Metals and Hard Materials, 2011, 29(2): 188-201.
  • 2SHON I J, KIM B R, DOH J M, et al. Consolidation of binderless nanostructured titanium carbide by high-frequency induction heated sintering [J]. Ceramics International, 2010, 36(6): 1797-1803.
  • 3KIM B R, WOO K D, DOH J M, et al. Mechanical properties and rapid consolidation of binderless nanostructured tantalum carbide [J]. Ceramics International, 2009, 35(8): 3395-3400.
  • 4KIM B Y, WOO K D, YOON J K, et al. Mechanical propertiesand rapid consolidation of binderless niobium carbide [J]. Journal of Al|oys and Compounds, 2009, 481(1/2): 573-576.
  • 5HUANG S G, VANMEENSEL K, Van der BLEST O, et al. Binderless WC and WC-VC materials obtained by pulsed electric current sintering [J]. International Journal of Refractory Metals and Hard Materials, 2008, 26(1): 41-47.
  • 6KIM H C, KIM D K, WOO K D, et al. Consolidation of binderless WC-TiC by high frequency induction heating sintering [J]. International Journal of Refractory Metals and Hard Materials, 2008, 26(1): 48-54.
  • 7KIM, H C, PARK H K, JEONG I K, et al. Sintering of binderless WC-Mo2C hard materials by rapid sintering process [J]. Ceramics International, 2008, 34, (6): 1419-1423.
  • 8IMASATO S, TOKUMOTO K, KITADA T. Properties of ultra fine grain binderless cemented carbide 'RCCFN' [J]. Intentional Journal of Refractory Metals and Hard Materials, 1995, 13(5): 305-312.
  • 9NIPPON T C, Ltd. Binderless Cemented Carbide [EB/OL]. [2011-04-19]. http ://www.nittan.co.Jp/en/tech/techinfo/ binderless.html.
  • 10KELLNER F J J, HILDEBRAND H, VIRTANEN S. Effect of WC grain size on the corrosion behavior of WC-Co based hardmetals in alkaline solutions [J]. Journal of Refractory Metals and Hard Materials. 2009, 27(4): 806-812.

二级参考文献70

  • 1张立,W.DSchubert,黄伯云.热压固结与传统液相烧结对WC-20Co-1Y_2O_3硬质合金组织结构与性能的影响[J].粉末冶金材料科学与工程,2003,8(3):179-185. 被引量:4
  • 2裴燕斌,果世驹,孟飞,杨霞.W-Co-纳米碳管反应烧结制备高度取向硬质合金[J].粉末冶金材料科学与工程,2005,10(3):160-165. 被引量:4
  • 3张立,陈述,张传福,黄伯云.含板状晶WC双模组织结构硬质合金的研究[J].稀有金属,2004,28(6):979-982. 被引量:14
  • 4高家诚,李龙川,王勇,乔丽英.碱热处理镁及其在仿生模拟体液中耐蚀性能[J].金属热处理,2005,30(4):38-42. 被引量:12
  • 5[2]BAMERJEE D,LAL G K,UPADHYAYA G S.调整粘结相和加Cr3C2对WC-Co硬质合金性能的影响[J].国外难熔金属与硬质材料,1996,12(2):48-57.BAMERJEE D,LALE G K,UPADHYAYA G S,et al.Influence of rearrangement of binder and addition of Cr3 C2 on properties of cemented carbide[J].Abroad Refractory Metal and Hard Materials,1996,12 (2):48-57.
  • 6[5]TIEGS T N,MENCHHOFER P A.Hardmetals based on Ni3Al as the binder phase[C]// FROES F H.Proceedings of the International Conference on Powder Metallurgy in Aerospace Defense and Demanding Applications-1995.Newjesy:Metal Powder Industries Federation,1995:211-218.
  • 7[6]MOSBAH A.WEXLER D.CALKA A.Tungsten carbide iron aluminide hardmetals:Nanocrystalline vs microcrystalline[J],Materials Science Forum,2000,360(9):649-654.
  • 8[7]SCHNEIBEL J H.Processing,properties and applications of iron aluminides[C]//SCHNEIBEI J H,CRIMP M A.TMS Annual Meeting:Processing,Properties and Applications of Iron Aluminides.Warrendale,PA,USA,1994:329.
  • 9[8]PLUCKNETT K P,TIEQS T N,BECHER P F,et al.Ductile intermetallic toughened carbide matrix composites[J].Ceramic Engineering and Science Proceedings,1996,17(3):314-321.
  • 10SACHIKO H,TAMAO S,AKIKO Y,et al.Precipitation control of calcium phosphate on pure magnesium by anodization[J].Corrosion Science,2008,50(10):2906-2913.

共引文献40

同被引文献71

引证文献8

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部