期刊文献+

基于NPF-CKF的捷联惯导系统动基座初始对准技术 被引量:5

Initial alignment of SINS on dynamic base based on NPF-CKF
下载PDF
导出
摘要 当海况不佳时,水下航行器大幅晃动,捷联惯导系统无法快速完成自主初始对准,因此提出了利用多普勒计程仪提供的速度信息进行运动中辅助对准。针对在非线性对准中扩展卡尔曼滤波存在精度低,且需要计算雅可比矩阵等不足,提出了一种基于非线性预测滤波的求容积卡尔曼滤波算法。该滤波算法将惯性器件测量误差作为模型误差使用非线性预测滤波器进行实时预测,然后再利用求容积卡尔曼滤波对模型误差补偿后的系统进行状态估计。仿真结果表明,与扩展卡尔曼滤波和求容积卡尔曼滤波算法相比,该滤波算法能够不仅提高失准角特别是方位失准角的估计精度,其精度约为45″,而且加快了收敛速度。同时由于该滤波算法降低了系统状态的维数,因此也大大减少了计算量。 The initial alignment of SINS cannot be achieved quickly under terrible ocean environment.In this paper,the velocity information of DVL is used to help implement alignment in motion.In view that the extended Kalman filter in nonlinear alignment has low accuracy and needs to calculate the Jacobian matrix,a method of combining nonlinear predictive filter with cubature Kalman filter is put forward,namely NPF-CKF.The NPF-CKF algorithm takes the measurement error of the inertial measurement unit as the model error,which is estimated online based on NPF,and then the system state is estimated by CKF based on the compensated model.Simulation results shows that,compared with the extended Kalman filter and the cubature Kalman filter,the NPF-CKF filter can not only improve the estimation accuracy of all misalignment angles especially the azimuth one whose precision is within 45,but also make the convergence faster.The proposed algorithm decreases the state dimension,so the computation burden is reduced.
出处 《中国惯性技术学报》 EI CSCD 北大核心 2011年第6期654-658,共5页 Journal of Chinese Inertial Technology
基金 国家自然科学基金(160040300008)
关键词 动基座 初始对准 非线性预测滤波 求容积卡尔曼滤波 dynamic base initial alignment nonlinear predictive filter cubature Kalman filter
  • 相关文献

参考文献9

  • 1郝燕玲,杨峻巍,陈亮,郝金会.基于平方根中心差分卡尔曼滤波的大方位失准角初始对准[J].中国惯性技术学报,2011,19(2):180-184. 被引量:11
  • 2R van der Merwe. Sigma-point Kalman filters for probabilistic inference in dynamic state-space models[D]. Portland, OR, USA: OGI School of Science & Engineering at Oregon Health & Science University, 2004.
  • 3Ali J, Nzar M. Realization of initial alignment algorithm for strapdown inertial navigation system using central difference filter[C]//Proceedings of the 17th World Congress. The International Federation of Automatic Control. Seoul, Korea, 2008:4731-4736.
  • 4Arasaratnam I, Haykin S. Cubature Kalman filters[J]. IEEE Transactions on automatic control, 2009, 54(6): 1254-1269.
  • 5Myung H, Bang H. Spacecraft parameter estimation by using predictive filter algorithm [C]// Proceedings of the 17th World Congress. The International Federation of Automatic Control. Seoul, Korea, 2008: 3452-3457.
  • 6Crassidis J L, Markley F L. Predictive filtering for nonlinear systems[J]. Journal of Guidance, Control and Dynamics, 1997, 20(3): 556-572.
  • 7曹娟娟,房建成,盛蔚.大失准角下MIMU空中快速对准技术[J].航空学报,2007,28(6):1395-1400. 被引量:20
  • 8杨静,张洪钺,李骥.预测滤波器理论在惯导非线性对准中的应用[J].中国惯性技术学报,2003,11(6):44-52. 被引量:14
  • 9张红梅,邓正隆,林玉荣.一种基于模型误差预测的UKF方法[J].航空学报,2004,25(6):598-601. 被引量:23

二级参考文献27

  • 1WEI Chun-ling,ZHANG Hong-yue.SINS in-Flight Alignment Using Quaternion Error Models[J].Chinese Journal of Aeronautics,2001,14(3):166-170. 被引量:11
  • 2ZhangHongmei DengZhenglong.UKF-based attitude determination method for gyroless satellite[J].Journal of Systems Engineering and Electronics,2004,15(2):105-109. 被引量:7
  • 3张红梅,邓正隆,林玉荣.一种基于模型误差预测的UKF方法[J].航空学报,2004,25(6):598-601. 被引量:23
  • 4魏春岭,张洪钺,郝曙光.捷联惯导系统大方位失准角下的非线性对准[J].航天控制,2003,21(4):25-35. 被引量:21
  • 5Gao Wei,Xu Bo,Sun Hongjun,Yu Fei.Application of nonlinear filtering for SINS initial alignment[C]//Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation.Luoyang,China,2006:2259-2263.
  • 6Julier S,Uhlmann J K.A new method for the nonlinear transformation of means and covariances in filters and estimations[J].IEEE Trans.A.C.,2000,45(3):477-482.
  • 7R van der Merwe.Sigma-point Kalman filters for probabilistic inference in dynamic state-space models[D].Portland,OR,USA:OGI School of Science & Engineering at Oregon Health & Science University,2004.
  • 8Ali J,Nzar M.Realization of initial alignment algorithm for strapdown inertial navigation system using central difference filter[C]//Proceedings of the 17th World Congress.The International Federation of Automatic Control.Sooul,Korea,2008:4731-4736.
  • 9Weidong Zhou,Guoqiang Ding,Yanling Hao,Guangzhao Cui.Quaternion central divided difference Kalman filtering algorithm and its applications to initial alignment of SINS[C]//Proceedings of the 2010 IEEE International Conference on Information and Automation.Harbin,China,2010:1846-1851.
  • 10Zhu Jihua,Zheng Nanning,Yuan Zejian,et al.A SLAM algorithm based on the central difference Kalman filter[C]// Intelligent Vehicles Symposiun.IEEE,2009:123-128.

共引文献62

同被引文献32

引证文献5

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部