期刊文献+

基于遗传聚类算法的Web日志挖掘研究 被引量:1

Research on web log mining based on genetic clustering algorithm
下载PDF
导出
摘要 K-均值聚类对初始聚类中心的选取较敏感,容易陷入局部最优。将改进的遗传算法与K-均值聚类相结合,以优化聚类中心。在种群进化过程中,父代个体均从种群中适应度高的个体中选择,同时,根据个体适应度动态调节交叉概率和变异概率,避免早熟现象。文中采用改进的遗传算法,对学院网站服务器上的Web日志进行用户和页面聚类,达到了很好的聚类效果。 K-means clustering algorithm has the shortcoming that plunges into a local optimum prematurely because of sensitive selection of initial cluster center. Using improved genetic algorithm into K-means clustering algorithm can optimize the cluster centers. In the evolutionary process, the parent individuals that have high fitness are selected. At the same time, Pc and Pm are adjusted dynamic according to the individual fitness to avoid premature convergence. This paper researched on users cluster and pages cluster for college ' s web logs and a good cluster effect by using the improved genetic algorithm is gotten.
作者 张艳肖
出处 《信息技术》 2011年第12期10-12,16,共4页 Information Technology
基金 河北省科技攻关计划项目(072135181)
关键词 WEB日志挖掘 聚类 遗传算法 K-均值聚类 Web logs mining clustering genetic algorithm K-means clustering
  • 相关文献

参考文献3

二级参考文献18

  • 1庄力可,寇忠宝,张长水.网络日志挖掘中基于时间间隔的会话切分[J].清华大学学报(自然科学版),2005,45(1):115-118. 被引量:24
  • 2庄丽娟.遗传算法的交叉算子研究[J].内蒙古民族大学学报(自然科学版),2006,21(6):637-639. 被引量:3
  • 3Jain A K, Dubes R C. Algorithms for clustering data [ M]. Englewood Cliffs: Prentice-Hall, 1988 : 1-334.
  • 4Huang Z. Extensions to the K-means algorithm for clustering large data sets with categorical values [J]. Data Ming and Knowledge Discovery, 1998, 2 (3): 283-304.
  • 5Maulik U, Bandyopadhyay S. Genetic algorithm based clustering technique[J]. Pattern Recognition, 2000, 33 (9): 1 455-1 465.
  • 6Selim S Z, Al-Sultan K S. A simulated annealing algorithm for the clustering[J]. Pattern Recognition, 1991, 24 (10):1 003-1 008.
  • 7Likas A, Vlassis M, Verbeek J. The global K-means clustering algorithm[J]. Pattern Recognition, 2003, 36 (2) : 451-461.
  • 8Park H S, Jun C H. A simple and fast algorithm for K- medoids clustering [ J ]. Expert Systems with Applications, 2009, 36 (2): 3 336-3 341.
  • 9Weiss G M.Miningwith rarity:a unifying framework.Chicago,Ⅱ,USA,SIGKDD Explorations,2004; 6(1):7-19.
  • 10Joshi M,Kumar V,Agarwa L R.Evaluating boosting algorithms to classify rare classes:comparison and improvements.First IEEE International Conference on Data Mining.San Jose,CA,2001.

共引文献56

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部