期刊文献+

基于最优组合模型的煤矿百万吨死亡率预测 被引量:1

Forecasting of Death-rate Per Million Tons in Mines Based on Optimal Combination Prediction Model
原文传递
导出
摘要 为有效解决常规单项预测模型组合时采用单一的加权平均系数而导致预测结果失真的缺陷,通过引入IOWHA(诱导有序加权调和平均)算子构建最优组合预测模型对我国煤矿百万吨死亡率进行预测分析,实证结果表明:该组合预测模型具有较高的拟合和预测精度,可为煤矿部门安全决策和科学规划提供一定理论依据。 In order to effectively solve defects that lead to prediction results distortion when single weighted average coefficient was used in combining conventional unidirectional prediction model.IOWHA(induced ordered weighted harmonic averaging) operator was introduced for constructing optimal combination prediction model to predict and analyze death-rate per million tons in our coal mines.The experimental results showed that,the fitting and predication accuracy of optimal combination prediction model are better than conventional unidirectional prediction model.This can offer some theory basis to coal mine departments in safety decision and scientific planning.
出处 《煤炭技术》 CAS 北大核心 2012年第1期12-14,共3页 Coal Technology
关键词 煤矿安全 百万吨死亡率 灰色预测 神经网络 coal mine safety death-rate per million tons grey prediction neural network
  • 相关文献

参考文献6

二级参考文献33

共引文献47

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部