期刊文献+

分布式数据流挖掘的研究进展 被引量:8

Advances in Study of Distributed Mining of Data Streams
下载PDF
导出
摘要 随着通信技术和硬件设备的不断发展,尤其是小型无线传感设备的广泛应用,数据采集和生成技术变得越来越便捷和趋于自动化,研究人员正面临着如何管理和分析大规模动态数据集的问题。能够产生数据流的领域应用已经非常普遍,例如传感器网络、金融证券管理、网络监控、Web日志以及通信数据在线分析等新型应用。这些应用的特征是环境配备有多个分布式计算节点;这些节点往往临近于数据源;分析和监控这种环境下的数据,往往需要对挖掘任务、数据分布、数据流入速率和挖掘方法有一定的了解。综述了分布式数据流挖掘的当前进展概况,并展望了未来可能的、潜在的专题研究方向。 With advances in communications technology and hardware equipment technologies,particularly the wide use of small wireless sensor devices,data collection and generation technologies have become more convenient and automated,organizations and researchers are faced with the ever growing problem of how to manage and analyze large dynamic datasets.Environments that produce streaming sources of data are becoming common place,such as sensor network,financial data management,network monitoring,Web log analysis and the communication data online analysis.In many application instances,these environments are also equipped with multiple distributed computing nodes that are often located near the data sources.Analyzing and monitoring data in such environments requires data mining technology that is cognizant of the mining task,the distributed nature of the data,and the data influx rate.We reviewed the current situation of the field and identified potential directions of future research.
出处 《计算机科学》 CSCD 北大核心 2012年第1期1-8,36,共9页 Computer Science
基金 国家自然科学基金(60875029)资助
关键词 分布式数据流挖掘 数据流挖掘 数据流 Distributed mining of data streams Data streams mining Data stream
  • 相关文献

参考文献68

  • 1IMbeock B, tMbu S, Datar M, et al. Models and issues in data stream systems[C]//Proceedings of the Symposium on Princi- ples of Database Systems (PODS). 2002:1-16.
  • 2Bulut A, Singh A. SWAT: Hierarchical stream summarization in large networks [C] // Proceedings of the International Confe- rence on Data Engineering (ZCDE). 2003:72-76.
  • 3Papadimitriou S, Sun J, Faloutsos C. Streaming pattern discovery in multiple time series[C] // Proceedings of the International Conference on Very Large Data Bases (VLDB). 2005 : 697-708.
  • 4Chiky R, Hebrail G. Summarizing Distributed Data Streams for Storage in Data Warehouses[C],//Proceedings of the 10th Inter- national Conference on Data Warehousing and Knowledge Dis- covery. Turin, Italy: Springer-Verlag, 2008 : 65-74.
  • 5Babcock B, Olston C. Distributed top-k monitoring [C]//Pro- ceedings of the International Conference on Management of Data (SIGMOD). 2003 : 28-39.
  • 6Borzsonyi S,Kossmann D, Stocker K. The skyline operator[C]// Proceedings of the 17th International Conference on Data Engi- neering. Washington: IEEE Computer Society, 2001 : 421-430.
  • 7Tao Y F, Papadias D. Maintaining sliding window skylines on data streams [J]. IEEE Transactions on Knowledge and Data Engineering, 2006,18(3) : 377-391.
  • 8Chomieki J, Godfrey P,Gryz J, et al. Skyline with presorting[C]// Proeeedings of the 19th International Conference on Data Engi- neering. Washington: IEEE Computer Society, 2003: 717-719.
  • 9Papadias D,Tao Y F, Fu G, et al. Progressive skyline computa- tion in database systems [J]. ACM Transaetions on Database Systems, 2005,30(1):41-82.
  • 10Tan K, Eng P, Ooi B. Efficient progressive skyline computation [C] // Proceedings of the 27th VLDB Conference~ Roma, Italy, 2001:301- 310.

二级参考文献12

  • 1金澈清,钱卫宁,周傲英.流数据分析与管理综述[J].软件学报,2004,15(8):1172-1181. 被引量:161
  • 2孙圣力,黄震华,李金玖,郭建奎,朱扬勇.数据流上高效计算子空间Skyline的算法[J].计算机学报,2007,30(8):1418-1428. 被引量:9
  • 3Cormode G,Garofalakis M.Sketching streams through the net:distributed approximate query tracking[C]//Proceedings of the 31th VLDB Conference.Trondheim,Norway,2005:13-24.
  • 4Borzsonyi S,Kossmann D,Stocker K.The skyline operator[J/OL]:ICDE,2001:421-430.
  • 5Tan K,Eng P,Ooi B.Efficient progressive skyline computation[C]//Proceedings of the 27th VLDB Conference.Roma,Italy,2001:301-310.
  • 6Kossmann D,Ramsak F,Rost S.Shooting stars in the sky:an online algorithm for skyline queries[C]//Proceedings of the 28th VLDB Conference.Hong Kong,China,2002:275-286.
  • 7Papadias D,Tao Y,Fu G,et al.Progressive skyline computation in database systems[J].ACM Transactions on Database Systems,2005,30(1):41-82.
  • 8Tao Y,Papadias D.Maintaining sliding window skylines on data streams[J].IEEE Transactions on Knowledge and Data Engineering.2006,18 (3):377-391.
  • 9Lin X,Yuan Y,Wang W,et al.Stabbing the sky:efficient skyline computation over sliding windows[J/OL].ICDE,2005:502-513.
  • 10Balke W,Untzer U,Zheg J.Efficient distributed skylining for web information systems[C]//International Conference on Extending Database Technology.Heraklion-Crete,Greece,2004:256-273.

共引文献5

同被引文献71

引证文献8

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部