期刊文献+

一种基于约束的关联规则挖掘算法 被引量:11

Efficient Algorithm for Mining Association Rules with Constraints
下载PDF
导出
摘要 基于约束的关联规则挖掘是一种重要的关联挖掘,能按照用户给出的条件来实行有针对性的挖掘。大多数此类算法仅处理具有一种约束的挖掘,因而其应用受到一定程度的限制。提出一种新的基于约束的关联规则挖掘算法MCAL,它同时处理两种类型的约束:非单调性约束和单调性约束。算法包括3个步骤:第一步,挖掘当前数据集的频繁1项集;第二,应用约束的性质和有效剪枝策略来寻找约束点,同时生成频繁项的条件数据库;最后,递归地应用前面两步寻找条件数据库中频繁项的约束点,以生成满足约束的全部频繁项集。通过实验对比,无论从运行时间还是可扩展性来说,本算法均达到较好的效果。 Association rules mining with constraints is an important association mining method,and it can mine the rules according to the users needs.Most of algorithms deal with one constraint,but in the reality applications,usually there are two or more constraints.In this paper,a novel algorithm for mining association rules with constraint was proposed.It can deal with two constraints simultaneously,namely constraint of anti-monotone and constraint of monotone.The algorithm consists of three phases,first,frequent 1-itemsets are collected over the dataset,second,we apply some prune techniques to the constraints check and a conditional database is generated,and at the end,the final frequent itemsets which are satisfied with the constraints are generated.Experimental results show that the proposed algorithm is efficient both in run time and scalability.
出处 《计算机科学》 CSCD 北大核心 2012年第1期244-247,共4页 Computer Science
基金 国家自然科学基金(60875029)资助
关键词 数据挖掘 关联规则挖掘 约束关联挖掘 Data mining Association rules mining Association rules mining with constraint
  • 相关文献

参考文献13

  • 1Ng R T, Lakshmannan L V S, Han J ia-wei. Exploratory mining and pruning optimizations of constrained associations mles[C]// Proceedings ACM SIGMOD International Conference on Mana- gement of Data. Seattle,Washington,USA,June 1998.
  • 2Srikant R,Vu Q,Agrawal R. Mining association rules with item constraintsl[C]//Proceedings of ACM International Conference on Knowledge Discovery and Data Mining. 1997:67-73.
  • 3Lakshmanan L, Ng R, H an J, et al. Optimization of constrained frequent set queries with 2-variable constraints[C]//ACM SIG- MOD Conference on Management of Data. 1999:157-168.
  • 4Pie J, Han J. Can we push more constraints into frequent pattern mining? [C]//ACM SIGKDD Conferene~ 2000:350-354.
  • 5Pie J, Han J, Lakshrnanan L. Mining frequent itemsets with con- vertible constraints[C]//IEEE ICDE Conference 2001:433-442.
  • 6Bucila C, Gehrke J, Kifer D, et al. Dualminer: Adual-pruning al- gorithm for itemsets with eonstraints[C]//EightACM SIGKDD Internationa Conf. on Knowledge Discovery and Data Mining. Edmonton, Alberta, August 2002 : 42-51.
  • 7Ting R M, Bailey J, Ramamohanarao K. Paradualminer: An effi- cient parallel implementation of the dualminer algorithm[C]// Eight Pacific-Asia Conference(PAKDD 2004). Sydney, Austra- lia, May 2004 : 96-105.
  • 8Bonchi F, Giannotti F, Mazzanti A, et al. Examiner: Optimized level-wise frequent pattern mining with monotone constraints [C]//IEEE ICDM. Melbourne, Florida, November 2004.
  • 9Bonchi F, Lucchese C. On closed constrained frequent pattern mining[C] // IEEE International Conference on Data Mining Brighton. UK, November 2004.
  • 10Bonehi F, Luechese C, Trasarti R. Pushing tougher constraints in frequent pattern mining[C]// 9th Pacific-Asia Conference on Knowledge Discovery and Data Mining. Hanoi, Vietnam, May 2005.

同被引文献90

引证文献11

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部