期刊文献+

矩不变调整的二维Shannon熵图像分割及其快速实现 被引量:5

Preserving-Moment Principle-based 2-D Shannon Entropy Image Thresholding Method and its Fast Recursive Implementation
下载PDF
导出
摘要 为了克服二维Shannon熵阈值法的缺陷,提出了一种使用矩不变法来调整二维直方图斜分Shannon熵的阈值分割方法。首先将二维直方图斜分原理运用到两种Shannon熵阈值法中,然后利用矩不变法从两种熵阈值法获取的阈值中选择最佳阈值,并提出二维直方图斜分Shannon熵阈值法的一般递推算法,最后将二维直方图分布特性与这种算法有机结合得到新型快速的递推算法。实验结果表明,提出的方法不仅分割效果优于当前的二维直方图斜分的最大熵阈值法,而且运行速度更快,约快4倍。 In order to overcome the drawbacks of the 2-D Shannon entropy image thresholding method,a preserving-moment-modified Shannon entropy image thresholding method based on 2-D histogram oblique segmentation was pre-sented.First the two thresholding methods based on Shannon entropy were formulated by the oblique line which is perpendicular to the main diagonal;then the optimal threshold was chosen from the thresholds obtained from these methods using the preserving-moment principle,and its recursive algorithm of the method based on 2-D histogram oblique segmentation was inferred,finally the features of 2-D histogram and the algorithm were combined to get a novel recursive algorithm.Experimental results show that the proposed method's segmentation performance is much better and its running speed is about four times faster,compared with the current maximum entropy method based on 2-D oblique segmentation.
出处 《计算机科学》 CSCD 北大核心 2012年第1期276-280,共5页 Computer Science
基金 国家自然科学基金项目(60873104) 河南省重点科技攻关项目(102102210180)资助
关键词 图像分割 阈值化 二维直方图斜分 矩不变法 Shannon熵 Image segmentation Thresholding 2-D histogram oblique segmentation Moment-preserving principle Shannon entropy
  • 相关文献

参考文献11

  • 1张新明,郑延斌,张慧云.应用混沌多目标规划理论融合的图像分割[J].小型微型计算机系统,2010,31(7):1416-1420. 被引量:9
  • 2Kapur J N,Sahoo P K,Wong A K C. A new method for grey- level picture thresholding using the entropy of the histogram [J]. Computer Vision, Graphics and Image Processing, 1985,29 (3) : 273-285.
  • 3Sahoo P K,Slaaf D W,Albert T A. Threshold selection using aminimal histogram entropy difference [J]. Optical, Engineering, 1997,36 (7) :1976-1981.
  • 4Abutaleb A S. Automatic thresholding of gray-level pictures u sing two-dimensional entropies [J]. Pattern Recognition, 1989, 47(1) :22-32.
  • 5Brink A D. Thresholding of digital images using two-dimensional entropies [J]. Pattern Recognition, 1992,25 (8) : 803-808.
  • 6Chen W T, Wen C H, Yang C W. A fast two-dimensional en- tropic thresholding algorithm [J]. Pattern Recognition, 19 9 4,2 7 (7) : 885-893.
  • 7Gong J,Li L Y,Chen W N. Fast recursive algorithm for two-di- mensional thresholding [J]. Pattern Recognition, 1998,31 (3) : 295-300.
  • 8吴一全,潘喆,吴文怡.二维直方图区域斜分的最大熵阈值分割算法[J].模式识别与人工智能,2009,22(1):162-168. 被引量:36
  • 9Tsai W H. Moment-preserving thresholding: A new approach [J]. Computer, Graphics and Image Processing, 1985,29 ( 3 ) : 377-393.
  • 10张新明,李双,郑延斌,张慧云.傅里叶谱和矩不变法结合的图像阈值分割[J].计算机应用,2010,30(8):2094-2097. 被引量:3

二级参考文献37

共引文献46

同被引文献58

  • 1张红蕾,宋建社,翟晓颖.一种基于二维最大熵的SAR图像自适应阈值分割算法[J].电光与控制,2007,14(4):63-65. 被引量:8
  • 2BELONGIE S, MALIK J, PUZICHA J. Shape matching and object recognition using shape contexts[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(4): 509-522.
  • 3LIU GANG, WU DI, ZHANG HONG-GANG, et al. A new feature extraction method based on Fourier transform in handwriting digits recognition[C]// Proceedings of 2002 International Conference on Machine Learning and Cybernetics. Piscataway: IEEE, 2002, 3: 1227-1231.
  • 4WANG XUEWEN, DING XIAOQING, LIU CHANGSONG. Gabor filters-based feature extraction for character recognition[J].Pattern Recognition, 2005, 38(3): 369-379.
  • 5OUYANG W, ZHANG R, CHAM W-K. Fast pattern matching using orthogonal Haar transform[C]// CVPR 2010: IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE, 2010, 3050-3057.
  • 6SIMARD P Y, CUN Y A L, DENKER J S, et al. Transformation invariance in pattern recognition — tangent distance and tangent propagation[C]// Proceedings of Neural Networks: Tricks on the Trade. Berlin: Springer-Verlag, 1998: 239-274.
  • 7HUTTENLOCHER D P, KLANDERMAN G A, RUCKLIDGE W J. Comparing images using the Hausdorff distance[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(9): 850-863.
  • 8ULLAH F, KANEKO S. Using orientation codes for rotation-invariant template matching[J].Pattern Recognition, 2004, 37(2): 201-209.
  • 9LISBOA P J G, PERANTONIS S J. Invariant digit recognition by Zernike moments and third-order neural networks[C]// Second International Conference on Artificial Neural Networks. Piscataway: IEEE, 1991: 82-85.
  • 10CHANG C-C, LIN C-J. LIBSVM: A library for support vector machines[EB/OL].[2011-11-05]. http://www.csie.ntu.edu.tw/~cjlin/libsvm.

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部