期刊文献+

萘掺杂对MgB_2超导线材微结构和超导电性的影响(英文)

Effects of C_(10)H_8 Doping on Microstructure and Supercon-ductivity of MgB_2 Wires
原文传递
导出
摘要 采用原位粉末装管技术(in-situ PIT)制备了萘(C10H8)掺杂 MgB2/Nb/Cu 线材。前驱粉末按照 MgB2+xwt% (x=0,2,5,8)的比例将 Mg 粉、B 粉和 C10H8粉末混合研磨,装入 Cu/Nb 复合管中,分别拉拔加工至Φ2.0 mm 和Φ1.0 mm,然后 Ar 气氛中分别在 650,700,750 ℃热处理,保温 2.5 h。通过 X 射线衍射仪(XRD)、扫描电子显微镜(SEM)和能谱仪(EDS)等测试手段分析了样品的相结构和微观结构等。结果发现,样品超导转变温度 Tc不随萘掺杂量的变化而变化,但正常态电阻有所降低。在 20 和 25 K 无外磁场时,x=8 样品的临界电流密度分别达到 1.1×105和 3.8×104 A/cm2,而 x=5 样品也达到 3.1×104 和 1.2×104 A/cm2。 C10H8-doped MgB2 wires were fabricated by in-situ PIT(Powder in Tube) method.The Nb/Cu tube was filled with the uniformly mixed precursor powders of magnesium,boron and C10H8 with the stoichiometry of MgB2+xwt%C10H8,where x=0,2,5,8 and drawn to diameter Φ2 mm and Φ1 mm,respectively,and then heat treated in argon atmosphere at three different temperatures(650,700,750 ℃) for 2.5 h.The phase formation and microstructures of the samples were analyzed by X-ray diffraction(XRD),scanning electron microscopy(SEM),and so on.It is found that the critical transition temperature(Tc) changes little with increasing of C10H8 doping content,while normal resistance decreases to some degree.At 20,25 K and in zero external field,the critical current density(Jc) the sample of x=8 achieves 1.1×105 and 3.8×104 A/cm2,respectively,and the Jc of the sample of x=5 reaches 3.1×104 and 1.2×104 A/cm2,respectively.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2012年第1期5-8,共4页 Rare Metal Materials and Engineering
基金 “863” Project (2007AA03Z237) the National Key Basic Research Program (No. 2011CBA00104) of China
关键词 萘掺杂 MgB2线材 微观结构 超导电性 C10H8 doping MgB2 wires microstructure superconductivity
  • 相关文献

参考文献13

  • 1Yamamoto Akiyasu, ShimoYama Jun-Ichi, Ueda Shinya et al. IEEE Transactions on Applied Superconductivity[J], 2005, 15(2): 3292.
  • 2Shcherbakova O V, Pan A V, Wang J Let al. Superconductor Science & Technology[J], 2008, 21(1): 157.
  • 3Mickclson W, Cumings J, Han W Q et al. Physical Review B[J], 2002, 65(5): 525.
  • 4Gonnelli R S, Daghero D, Ummarino G A et al. Journey of Superconductivity[J], 2005, 18(5): 681.
  • 5Kasinathan Deepa, Lee K W, Pickett W E. Physica C-Superconductivity and Its Applications[J], 2005, 424(3-4): 116.
  • 6Fu B Q, Feng Y, Yan Get al. Journal of AppliedPhysics[J], 2002, 92(12): 7341.
  • 7Amatsumoto, Kumakura H, Kitaguchi Het al. Superconductor of Science & Technology[J], 2003, 16:926.
  • 8Dou S X, Soltanian S, Zhao Yet al. Superconductor Science & Technology[J], 2005, 18:710.
  • 9Monika Mudgel, Chandra L S Sharath, Ganesan Vet al. Journal of AppliedPhysics[J], 2009, 106(03): 3904.
  • 10吉和林,金新,范宏昌.Bean模型与不同几何形状样品中的临界电流密度[J].低温物理学报,1992,14(1):12-17. 被引量:8

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部