期刊文献+

基于粗糙集的认知无线网络跨层学习 被引量:2

Cross-Layer Learning in Cognitive Radio Networks Based on Rough Set
下载PDF
导出
摘要 认知学习是认知无线网络(CRN)跨层设计中非常重要的一环,它要求通信网络能利用已知跨层环境参数进行知识提取学习,并根据需要重配置网络.本文提出了一种基于粗糙集的CRN跨层学习技术,构建了案例事件库、知识库与规则匹配器,该模型结合数据离散、属性约简、值约简与规则生成算法来解决CRN的跨层学习问题.通过典型测试数据集的仿真比较,选出一组适合于所提出模型的粗糙集算法集合.仿真结果表明,该算法集能有效解决CRN跨层学习中知识提取与规则生成的准确性及有效性等问题,提出的跨层学习模型能有效用于CRN中的知识学习. Cognitive learning is a very important part for cross-layer design in cognitive radio networks (CRNs). CRNs are required to take advantage of the known cross-layer parameters for learning environment and reconfiguring the network. This paper proposes a cross-layer learning scheme for CRN based on rough set,builds database of case events,knowledge base and rule match- er. This model solves the cross-layer learning in CRNs through combining data discretization, attribute reduction, value reduction and rule generation. By comparing the simulation results of typical testing data sets, a group of rough set algorithms are selected for the proposed model. The simulation results show that the set of algorithms can effectively solve accuracy and validity of knowledge ex- traction,rule generation for CRN cross-layer learning. The proposed model can be validly used in knowledge learning for CRNs.
出处 《电子学报》 EI CAS CSCD 北大核心 2012年第1期155-161,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.61072138) 国防基础科研计划(No.B3120110005) 国家973重点基础研究发展计划(No.2009CB320403) 西安电子科技大学ISN实验室开放课题(No.ISN10-09)
关键词 认知网络 规则生成 学习引擎 跨层设计 cognitive radio networks rule generation learning engine cross-layer design
  • 相关文献

参考文献18

  • 1Yanbing LIU, Qin ZHOU. State of the art in cross-layer design for cognitive radio wireless networks [ A ]. Proceedings of the 2009 International Symposium on Intelligent Ubiquitous Com- puting and Education [ C]. Washington, DC, USA: IEEE Com- puter Society, 2009. 366 - 369.
  • 2Yu Yong, Wang Lifeng, Yu Quan. Cross-layer architecture in cognitive ad hoc networks [ A ]. WRI International Conferenceon Communications and Mobile Computing, CMC ' 09 [ C ]. Washington, DC, USA: lEE Computer Society, 2009.47 - 51.
  • 3Lijun Chen, Steven H Low, John C Doylea. Cross-layer design in mulfihop wireless networks[ J ]. Computer Networks, 2011, 55(2) :480 - 496.
  • 4Baynast A D,Mahonen P M. ARQ-based cross-layer optimiza- tion for wireless multicarrier Wansmission on cognitive radio networks [J]. Computer Networks, 2008,52 (4) : 778 - 794.
  • 5Alexander M Wyglinski, Maziar Nekovee, Y Thomas Hou. Cognitive Radio Communications and Networks:Principles and Practice[M]. USA: Academic Press, 2009.
  • 6Baldo N, Zorzi M. Fuzzy logic for cross-layer optimization in cognitive radio networks[ J]. IEEE, Communications Magazine, 2008,46(4) :64 - 71.
  • 7Fangwen Fu,Mihaela van der Schaar. Learning to compete for resources in wireless stochastic games[ J]. IEEE Transactions on Vehicular Technology, 2009,58 (4) : 1904 - 1919.
  • 8Ana Galindo-Serrano, Lorenza Giupponi. Distributed Q-learn- ing for aggregated interference control in cognitive radio net- works[ J] IEEF. Transactions on Vehicular Technology,2010, 59(4) : 1823 - 1834.
  • 9M Bogatinovski, L Gavrilovska. Overview of cross-layer opti- mization methodologies for cognitive radio[ A]. Proceedings of the 16th Telecommunications Forum Telffor [ C ]. Serbia, 2008. 254 - 257.
  • 10韩冰,高新波,姬红兵.基于模糊粗糙集的新闻视频镜头边界检测方法[J].电子学报,2006,34(6):1085-1089. 被引量:11

二级参考文献44

  • 1黄毅群,卢正鼎,胡和平,李瑞轩.分布式异常检测中隐私保持问题研究[J].电子学报,2006,34(5):796-799. 被引量:7
  • 2陶新民,陈万海,郭黎利.一种新的基于模糊聚类和免疫原理的入侵监测模型[J].电子学报,2006,34(7):1329-1332. 被引量:6
  • 3邓大勇,黄厚宽,李向军.不一致决策系统中约简之间的比较[J].电子学报,2007,35(2):252-255. 被引量:28
  • 4Hawkins D. Identifications of Outliers [ M]. London: Chapman and Hall, 1980.
  • 5Knorr E, Ng R. Algorithms for mining distance-based outliers in large datasets [ A ]. Proc of the 24th VLDB Conference [ C ]. New York:Morgan Kaufinann, 1998.392 - 403.
  • 6Knorr E, et al. Distance-based outliers: algorithms and applica tions[ J]. Very Large Databases, 2000,8(3 - 4) : 237 - 253.
  • 7Shannon C E. The mathematical theory of communication[ J ]. Bell System Technical Journal, 1948,27(3 - 4) :373 - 423.
  • 8Rousseeuw P J, Leroy A M. Robust Regression and Outlier De tectionEM]. New York: John Wiley & Sons, 1987.
  • 9Johnson T, et al. Fast computation of 2 dimensional depth contours[A]. Proc of the 4th Int Conf on Knowledge Discovery and Data Mining[ C]. New York: AAAI Press, 1998. 224 - 228.
  • 10Jain A K,et al. Data clustering: a review[ J] .ACM Computing Surveys, 1999,31(3) :264 - 323.

共引文献25

同被引文献14

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部