期刊文献+

基于加权语义网的专家知识发现及表示方法 被引量:10

Expert Knowledge Discovery and Representation Based on Weighted Semantic Network
下载PDF
导出
摘要 在分析传统的以词形为切入点来建立知识内在关联的基础上,从语义网络的角度对专家知识发现及表示方法进行了研究。在语义关系建模时,综合考虑知识元的语义关系及其在文本中的重要性,提出了知识加权语义网(WSNK),从而实现专家知识的准确获取和表示。该方法可通过网络图表示专家知识的构成、通过语义描述专家知识领域等,具有客观、准确、易于理解等特点。最后结合一个实例对方法进行了验证和分析,结果表明,该方法能够客观、准确地理解和表示专家的知识。 Based on the analysis of knowledge interconnectedness established by the word form method, this paper researches the discovery and representation of an expert' s knowledge from the view of semantic network. In the semantic relations modeling, both the semantic relation and importance of knowledge elements are considered. A knowledge weighted semantic network is presented which can discovery and represent expert knowledge accurately. Thus, the knowledge structure of an expert can be showed as a network and the filed knowledge can be described through semantic meaning more objective, accurate and easier to understand. A case study is given in the end. The result proves that this method can accurately understand and represent the expert knowledge.
出处 《情报学报》 CSSCI 北大核心 2012年第1期60-64,共5页 Journal of the China Society for Scientific and Technical Information
基金 国家自然科学基金项目(70871043,70801028),教育部人文社会科学研究项目(08JC630027).
关键词 加权语义网 知识元 语义关系 专家知识 weighted semantic network, knowledge element, semantic relation, expert knowledge
  • 相关文献

参考文献18

二级参考文献144

共引文献798

同被引文献141

引证文献10

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部