期刊文献+

室内移动机器人视觉里程计研究 被引量:8

Research on visual odometry for indoor mobile robots
下载PDF
导出
摘要 研究了一种精度较高的视觉里程计实现方法。首先采用计算量小、精度高的SURF算法提取特征点,并采用最近邻向量匹配法进行特征点匹配;采用RANSAC算法求得帧间摄像机坐标系的转换矩阵;提出了一种视觉里程计标定方法,并通过该方法得到机器人起始点坐标系下的位移信息,保证了机器人有自身姿态变化时的定位的准确性;圆轨迹实验验证了视觉里程计算法的可行性。 A high precision visual odometry is proposed. Small computational amount and high precision algorithm--SURF is used for the extraction of feature points and Hausdorff diatance is introduced for the matching. The transformation matrix of camera coordinates of adjacent frames are got by the nearest neighbor vector-matching algorithm and the precision is ensured. A method of odometry calibration is proposed to obtain the displacement information under the robot starting point coordinate and this method could make sure of the precision when the posture of robot changed. The feasibility of vision odometry is verified by the round trace experiments.
出处 《传感器与微系统》 CSCD 北大核心 2012年第2期26-29,共4页 Transducer and Microsystem Technologies
关键词 视觉里程计 SURF算法 RANSAC算法 倾斜校正 vision odometry SURF algorithm RANSAC algorithm slant correction
  • 相关文献

参考文献7

  • 1Matthies L, Shafer S. Error modeling in stereo navigation [ J ]. IEEE J Robot Automat, 1987,3 (3) :239 -250.
  • 2Nister D, Naroditsky O, Bergen J. Visual odometry [ C ]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattem Recognition,2004:652-659.
  • 3Nister D, Naroditsky O. Visual odometry for ground vehicle applications[ J]. Journal of Field Robotics,2006,23 ( 1 ) :3 --20.
  • 4Navid N V, Roberts J, Sfinivasan M V. Practical visual odometry for car-like vehicles [ C ]///2009 IEEE International Conference on Robotics and Automation, Kobe International Conference Center,2009.
  • 5Zhang Tianguang, Liu Xiaodong, Kuhnlenz K, et al. Visual odometry for the autonomous city explorer[ C ]J/The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009 : 11-15.
  • 6Bay H, Ess A, Tuytelaars T, et al. Speeded-up robust features (SURF) [J]. Computer Vision and Image Understanding,2008, 110:346 --359.
  • 7Fischler M A, Bolles R C. Random sample consensus:Aparadigm for model fitting with applications to image analysis and automated cartography [ J ]. ACM Commun, 1981,24 (6) :381-389.

同被引文献31

引证文献8

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部