期刊文献+

多分形谱簇研究及其在说话人识别中的应用 被引量:2

Research on Multifractal Spectrum Cluster and Its Application in Speaker Recognition
下载PDF
导出
摘要 语音是一种复杂的非线性信号,这使得基于线性系统理论发展起来的传统说话人识别技术性能难以进一步提高。本文提出了多分形谱簇分析方法,用于分析语音信号的非线性特征,并应用于短语音(2秒)说话人识别。通过对Cantor集的仿真实验,发现不同标度区能反映出系统不同阶段的生长规律,因此可用一组连续变化的多分形谱分层次地表征系统的分形特性,即多分形谱簇分析方法。然后结合语信号的分形特点,提出一种语音的多分形谱簇特征(Multifractal SpectrumCluster Feature,MSCF)的提取方法。最后将几种非线性特征与短时谱特征结合用于说话人识别,基于TIMIT数据库50人的实验表明,非线性特征与短时谱特征互补性较强,特别是MSCF与MFCC、LPC特征结合,使得系统的误识率下降到0.8%。 Speech is a complicated nonlinear signal,so traditional speaker recognition technology based on the linear theory is difficult to be further improved.Hence,the multifractal spectrum cluster analytical method is proposed,and applied to the analysis of nonlinear characteristic of the speech signal in speaker recognition of short speech.Through extensive experiments for Cantor sets,it is found that sub-scaling ranges,which were neglected by traditional multifractal method,actually reflected the growth pattern in different growth stages.Therefore,in order to fully consider the fractal characteristics contained in different scaling range,the multifractal spectrum cluster analytical method is proposed to describe the multi-level fractal characteristics accurately and comprehensively.Then,according to the characteristic of the speech signal,an extraction method of speaker multifractal spectrum cluster feature(MSCF) is proposed, which could combine with short-term spectral feature in feature layer effectively.Finally,the combinations of several nonlinear features and short-term spectral feature are applied to speaker recognition.Experiment results based on the TIMIT show that nonlinear feature and short-term spectral feature are highly complementary,which make the error rate of speaker recognition system decrease obviously, especially the combination of MSCF,MFCC and LPC can reduce the error rate to 0.8%in short speech speaker recognition.
出处 《信号处理》 CSCD 北大核心 2011年第12期1914-1919,共6页 Journal of Signal Processing
基金 2009江苏省自然科学基金资助(BK2009059)
关键词 说话人识别 多分形谱簇 标度区 高斯混合模型 speaker recognition multifractal spectrum cluster scaling range Gaussian mixture model
  • 相关文献

参考文献10

  • 1Seo J.P Kim M.S.,Baek I.C.,Kwon Y.H.,Lee K.S.,Chang S.W.,Yang S.I..Similar speaker recognition using nonlinear analysis[J].Chaos,Solitons and Fractals,July 2004,21(1),p159-164.
  • 2Hou Limin,Wang Shuozhong.Generalized dimensions applied to speaker identification[C].Biometric Technology for Human Identification,Orlando,FL,USA,12-13 April 2004,p555-560.
  • 3Sengupta R.,Dey N.,Dipali N.,Datta A.K..Comparative Study of fractal behavior in quasi-random and quasi-periodic speech wave map[J].Fractal,2001,9(4),p403-414.
  • 4Sabanal S.,Nakagawa M..The fractal properties of vocal sound and their application in the speech recognition model[J],Chaos,Solitons & Fractals,1996,7 (11),p1825-1 843.
  • 5Petry A.,Barone D.A.C..Speaker identification using nonlinear dynamical feature[J].Chaos,Solitons & Fractals,2002,13(2),p221-231.
  • 6林嘉宇,王跃科,黄芝平,沈振康.一种新的基于混沌的语音、噪声判别方法[J].通信学报,2001,22(2):123-128. 被引量:6
  • 7陈国,胡修林,张蕴玉,朱耀庭.基于短时分形维数的汉语语音自动分段技术研究[J].通信学报,2000,21(10):6-13. 被引量:3
  • 8周宇欢,傅强.Rayleigh-Bénard对流的多分形及其谱特征[J].工程力学,2008,25(7):52-56. 被引量:3
  • 9Zhou Yuhuan,Wang Jinming,Zhang Xiongwei.Research on Speaker Recognition Based on Multifractal Spectrum Feature[C].ICCMS'09,Sanya,China,Jan 22-24 2010,p463-466.
  • 10Fan Yingle,Yi Li,Tong Qinye.Speaker gender identification based on combining linear and nonlinear features[C].7th World Congress on Intelligent Control and Automation,WCICA'08,Chongqing,China,Jun 25-27 2008,p6739-6744.

二级参考文献23

  • 1李建东,李明远,纪红.话音活动检测的模型及其在移动通信中的应用[J].电信科学,1995,11(10):22-25. 被引量:1
  • 2韦岗,陆以勤,欧阳景正.混沌、分形理论与语音信号处理[J].电子学报,1996,24(1):34-39. 被引量:33
  • 3马大猷 沈豪.声学手册[M].科学出版社,1983..
  • 4王东升 曹磊.混沌、分形及其应用[M].合肥:中国科学技术大学出版社,1995..
  • 5杨行峻 迟惠生.语音信号数学处理[M].北京:电子工业出版社,1995.8-21.
  • 6胡光锐.语音处理与识别[M].上海:上海科技文献出版社,1989..
  • 7王东升,混沌、分形及其应用,1995年
  • 8杨行峻,语音信号数字处理,1995年,8页
  • 9胡光锐,语音处理与识别,1989年
  • 10马大猷,声学手册,1983年,404页

共引文献9

同被引文献37

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部