期刊文献+

紧束缚近似方法在计算石墨烯能带中的应用 被引量:3

Application of the Tight-binding Method in Calculating Graphene Band Structure
下载PDF
导出
摘要 通过引入紧束缚近似理论,使用Matlab计算了石墨烯的能带和π能带图.结果表明,考虑最近邻原子影响,在K?Γ?M-K方向的全能带图中,观察到了能带的简并特性及能带间的跳跃,与其他方法(如第一原理)相符.在正交基矢下,π能带(价带和导带)具有完全的对称性,加入轨道重叠后(即非正交基矢),对称性被破坏,表现为价带靠近费米面,导带远离费米面,从能量的位移上可以发现,远离比靠近的趋势更为明显. In this paper,the band structure and the n-band dispersion of graphene is are calculated by means of the nearest neighbor atom tight-binding method. The results show that in the K-P-M-K direction,the properties of the band structure are in agreement with what is calculated by the ab intio method, and the degeneracy and hopping phenomenon are observed. In the framework of orthogonal basis, the n-band structure is symmetric, but the addition of the orbital overlap breaks the symmetry, which means that the valence band goes close to the Fermi surface while the conduction band goes away from the Fermi surface. It can be observed from the energy shift that the latter tendency is more obvious than the former.
作者 施仲诚 房鸿
出处 《西安工业大学学报》 CAS 2011年第6期528-532,共5页 Journal of Xi’an Technological University
关键词 紧束缚近似 最近邻原子 能带 轨道重叠 费米面 tight-binding nearest neighbor atom band structure orbital overlap fermi surface
  • 相关文献

参考文献10

  • 1Novoselov K S, Geim A K, Morozov S V, et al. Elec- tric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004,306 : 666.
  • 2Xu C H,Wang C Z,Chan C T, et al. A Transferable Tight-binding Potential for Carbon[J]. J Phys: Con- dens Matter, 1992,4: 6047454.
  • 3Reich S, Maultzsch J, Thomsen C. Tight-binding De- scription of Graphene [J]. Phys Rev B, 2002, 66 (035412): 1.
  • 4Cristina Bena and Gilles Montambaux. Remarks on the Tight-binding Model of Graphene [J ]. New J Phys,2009,11(095003) : 1.
  • 5Slater J C, Koster G F. Simplified LCAO Method for the Periodic Potential Problem [ J ]. Phys Rev, 1954, 94.1498.
  • 6Partoens B, Peeters F NL From Graphene to Graph- ite: Electronic Structure Around the K Point[J]. Phys Rev B, 2006,74(075404) : 1.
  • 7Gruneis A, Attaccalite C, Wirtz L, et al. Tight-binding Description of the Quasiparticle Dispersion of Graph- ite and Few-layer GraphemeEJ]. Phys Rev B, 2008,78 (205425) : 1.
  • 8Sergej Konsehuh, Martin Gmitra, Jaroslav Fabian. Tight-binding Theory of the Spin-orbit Coupling in Grapheme[J]. Phys Rev B,2010,82(245412) : 1.
  • 9Harrison W A. New Tight-binding Parameters for Covalent Solids Obtained Using Louie Peripheral States[J]. Phys Rev B, 1981,24 : 5835.
  • 10Castro Neto A H,Guinea F,Peres N M R,et al. The Electronic Properties of Grapheme [J]. Rev Mod Phys,2009,81 : 109.

同被引文献36

  • 1李国旺.傅里叶分析与正、倒格子的互易性[J].大学物理,1993,12(9):18-20. 被引量:2
  • 2张红梅,刘德.传递矩阵方法与矩形势垒的量子隧穿[J].河北科技大学学报,2006,27(3):196-199. 被引量:10
  • 3Novoselov K S,Geim A K,Morozov S V,et al. Electricfield effect in atomically thin carbon films[J]. Science,2004,306(5696): 666-669.
  • 4Castro N A H, Guine F, Peres N M R, et al. The electron-ic properties of graphene [J]. Rev Mod Phys, 2009, 81(1):109-162.
  • 5Novoselov K S,Geim A K, Morozov S V,et al. Two-dimen-sional gas of massless Dirac fermions in graphene[J].Nature,2005, 438(7065): 197-200.
  • 6Sprinkle M, Siegel D, Hu Y,et al. First direct observationof a nearly ideal graphene band structure[J]. Phys RevLett, 2009, 103(22): 226803.1-226803.6.
  • 7Zhang Yuan-bo,Tan Yan-wen, Stormer H L, et al. Experi-mental observation of the quantum Hall effect and Berrysphase in graphene[J]. Nature, 2005, 438(7065): 201-204.
  • 8Gusynin V P, Sharapov S G. Unconventional integerquantum Hall effect in graphene [J]. Phys Rev Lett, 2005,95(14): 146801.1-146801.7.
  • 9Mccann E, Fal'ko V I. Landau-level degeneracy and quan-tum hall effect in a graphite bilayer[J]. Phys Rev Lett,2006,96(8): 086805.1-086805.8.
  • 10Novoselov K S,Mccann E,Morozov S V, et al. Uncon-ventional quantum Hall effect and Berry's phase of 2n inbilayer graphene [J]. Nat Phys, 2006, 2(3): 177-180.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部