期刊文献+

基于Hessian矩阵和Gabor函数的局部兴趣点检测 被引量:8

A NOVEL HESSIAN-GABOR BASED LOCAL INTEREST POINT DETECTION
下载PDF
导出
摘要 局部特征方法是基于内容的图像与视频检索的重要方法。提出一种新的基于Hessian矩阵和Gabor函数的尺度不变局部特征点检测方法(Hessian-Gabor Detector)。该方法首先利用基于Hessian矩阵的检测子定位图像在空间域上的候选特征点位置,然后用基于Gabor函数的算子检测候选兴趣点在尺度空间的特征尺度,从而获得具有尺度不变特性的局部特征点。实验证明,与DOG、Harris-Laplace等方法相比,计算简单。应用于图像匹配中,能够显著地提高匹配效率。 Local feature is an important method in content-based image and video retrieval.This paper proposes a new scale invariant local feature points detection method based on Gabor function and Hessian matrix(Hessian-Gabor Detection).This method obtains the position of candidate feature points of the image in spatial domain with the detector based on Hessian matrix at first,and then detects the characteristic scale of candidate interest points in scale space with detector based on Gabor function,therefore the local feature points with scale invariant are attained.Experiments demonstrate that the approach proposed in this paper has simpler computation comparing with the DOG and Harris-Laplace.It can be used in image matching with conspicuously improved matching efficacy.
作者 文朝辉 路红
出处 《计算机应用与软件》 CSCD 北大核心 2012年第1期15-18,22,共5页 Computer Applications and Software
基金 国家自然科学基金(60875003) 上海市自然科学基金(11ZR1403400) 上海市智能信息处理重点实验室及上海市科学技术委员会资助(08DZ2271800 09DZ2272800)
关键词 局部特征 兴趣点检测 Gabor核函数 HESSIAN矩阵 图像匹配 Local feature Interest point detection Gabor kernel function Hessian matrix Image matching
  • 相关文献

参考文献15

  • 1Moravec H.Obstacle avoidance and navigation in the real world by a seeing robot rover[R].Technical Report CMU-RI-TR-3,Carnegie-Mellon University,Robotics Institute,1980.
  • 2Harris C,Stephens M.A combined comer and edge detector[C]//Fourth Alvey Vision Conference,Manchester,UK,1988:147-151.
  • 3Lindeberg Tony.Scale-space theory:A basic tool for analysing structures at different scales[J].Journal of Applied Statistics,1994,21(2):224-270.
  • 4Lindeberg Tony.Detecting salient blob-like image structures and their scales with a scale-space primal sketch:a method for focus-of-attention[J].International Journal of Computer Vision,1993,11 (3):283-318.
  • 5Lowe D G.Object recognition from local scale-invariant features[C]//Proceedings of the 7th International Conference on Computer Vision,Kerkyra,Greece,1999:1150-1157.
  • 6Lowe D G.Distinctive image feature from scale-invariant keypointa[J].International Journal of Computer Vision,2004,60 (2):91-110.
  • 7Mikolajczyk K,Schnid C.An affine invariant interest point detector[J].European Conference on Computer Vision,1993,11 (3):283-318.
  • 8Mikolajczyk K,Schmid C.Indexing based on scale invariant interest points[C]//Proceedings of the 8th International Conference on Computer Vision,Vancouver,Canada,2001:525-531.
  • 9Mikolajczyk K,Schmid C.An performance evaluation of local descriptors[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition,M adison,Wisconsin,2003.
  • 10Krystian Mikolajczyk,Cordelia Schmid.Scale & Affine Invariant Interest Point Detectors[J].International Journal of Computer Vision,2004,60(1):63-86.

二级参考文献15

  • 1Lindeberg T. Edge detection and ridge detection with automatic scale selection [ J ]. International Journal of Computer Vision, 1998, 30(2) : 117-154.
  • 2Lindeberg T. Feature detection with automatic scale selection[J]. International Journal of Computer Vision, 1998, 30(2) : 79-116.
  • 3Lowe D G. Object recognition from local scale-invariant features [ C]//Proceeding of the 7th IEEE International Conference on Computer Vision, NY, US: IEEE Computer Society, 1999: 1150-1157.
  • 4Lowe D G. Distinctive image features from scale-invariant keypoints[ J]. International Journal of Computer Vision, 2004, 60(2) : 91-110.
  • 5Jeong H, Kim C I. Adaptive determination of filter scales for edge detection [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14 (5) : 579-585.
  • 6Elder J H, Zucker S W. Local scale control for edge detection and blur estimation [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(7 ) : 699-716.
  • 7Marimont D H, Rubner Y. A probabilistic framework for edge detection and scale selection [ C ]// Proceeding of the 6th International Conference on Computer Vision. Bombay, India:Narosa Publishing House, 1998 : 207-214.
  • 8Gomez G, Marroquin J, Sucar L. Probabilistic estimation of local scale [ C ]// Proceeding of the 15 th International Conference on Pattern Recognition. NY, US: IEEE Computer Society, 2000: 790-793.
  • 9Fdez-Valdivia J, Garcia J A, Martinez-Baena J, et al. The selection of natural scales in 2D images using adaptive Gabor filtering[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(5): 458-469,.
  • 10Martinez-Baena J, Garc J A, Fdez-Valdivia J, et al. Scale selection using three different representations for images [ J ]. Pattern Recognition Letters, 1997, 18( 14): 1453-1467.

共引文献18

同被引文献90

引证文献8

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部