期刊文献+

一种SVM入侵检测的融合新策略 被引量:13

A new kind of SVM intrusion detection strategy for integration
下载PDF
导出
摘要 入侵检测是计算机网络安全中不可或缺的组成部分,其中异常检测更是该领域研究的热点内容。现有的检测方法中,SVM能够在小样本条件下保持良好的检测状态。但是单一的SVM检测仍存在检测率不高、误报率过高等局限性。结合D-S证据理论,提出一种基于多SVM融合的异常检测方法,有效地弥补单个SVM检测的局限性。通过KDD99评测数据的评测实验表明,该方法有效地提高了入侵检测率的同时降低了误报率,大幅度地提高了入侵检测系统的检测性能。 Intrusion detection is the indispensable part of computer network security, and anomaly detection system is hot in this research field. One of the existing detection methods, SVM maintains good condition of small-scale dataset. But the single SVM detec- tion still exists the limitation that low rate of detection and high rate of false positives. Combined with evidential theory, it puts forward an anomaly detection method based on SVM fusion, effectively covers the limitation of the single SVM detection. Evaluation data pro- filing KDD99 experiments shows that this method increases the intrusion detection rate while reducing false positives, greatly improves the detection performance of the intrusion detection system.
作者 李汉彪 刘渊
出处 《计算机工程与应用》 CSCD 2012年第4期87-90,178,共5页 Computer Engineering and Applications
基金 高等学校科技创新工程重大项目培育资金项目
关键词 入侵检测 异常检测 D-S证据理论 支持向量机(SVM) intrusion detection anomaly detection Dempster-Shafer theory Support Vector Machine (SVM)
  • 相关文献

参考文献10

二级参考文献37

  • 1李昆仑,黄厚宽,田盛丰,刘振鹏,刘志强.模糊多类支持向量机及其在入侵检测中的应用[J].计算机学报,2005,28(2):274-280. 被引量:49
  • 2肖云,韩崇昭,郑庆华,王清.一种基于多分类支持向量机的网络入侵检测方法[J].西安交通大学学报,2005,39(6):562-565. 被引量:13
  • 3赵晓峰,叶震.基于加权多随机决策树的入侵检测模型[J].计算机应用,2007,27(5):1041-1043. 被引量:6
  • 4[1]Duerr B,Haettich W,Tropf H,et al.A combination of statistic and syntactical pattern recognition applied to classification of unconstrained handwritten numerals[J].Pattern Recognition,1980,12(1):189-199.
  • 5[2]Ahmed P,Suen C Y.Computer recognition of totally unconstrained handwritten ZIP codes[J].Pattern Recognition and Artificial Intelligence,1987,1(1):1-15.
  • 6[3]Xu L,Krzyzak A,Suen C Y.Methods of combining multiple classifiers and their applications to handwriting recognition[J].IEEE Trans on Sys,Man,and Cyber,1992,23(3):418-435.
  • 7[4]Lam L,Suen C Y.Application of majority voting to pattern recognition: an analysis of its behavior and performance[J].IEEE Trans on Sys,Man,and Cyber,1997,27(5):553-561.
  • 8[5]Verikas A,Lipnickas A,Malmqvist K,et al.Soft combination of neural classifiers: a comparative study[J].Pattern Recognition Letters,1999,20:429-444.
  • 9[6]Lam L,Suen C Y.Optimal combining of pattern classifiers[J].Pattern Recognition Letters,1995,16:945-954.
  • 10[7]Abhijit S P,Robert B M.Pattern recognition with neural networks in C++[M].Boca Raton: CRC Press,1994.

共引文献117

同被引文献84

引证文献13

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部