期刊文献+

布液方式对水平蒸发管管间流型转换的影响 被引量:10

Effects of Liquid Distribution Method on Falling-Film Mode Transitions Between Horizontal Tubes
下载PDF
导出
摘要 为了探究液体分布装置布液方式对水平管管间液体流动流型转换的影响规律,采用可视化方法对3种工质、两种布液高度、8种液体分布装置开孔规格下的水平管管间液体流动流型转换进行了实验测量.通过高速摄像机拍摄,得到了流量由大到小(76~4.5L·h-1)调节时管间液体流动的5种流动形态和4种流动流型转换;对比膜雷诺数和伽利略数显示,测量结果与文献数据符合很好,转换雷诺数的最大偏差小于15%.实验结果表明:孔径不变,转换雷诺数随着孔间距增大而增大,孔间距不变,转换雷诺数随着开孔孔径增大而减小;直接布液方式的转换边界大于间接布液方式的转换边界.随着无量纲特征参数的逐渐增大,两种布液高度下的转换边界的差异逐渐减小.当无量纲特征参数大于40时,布液高度对管间液体的流动流型转换几乎无影响. The inter-tube flow mode transitions of three working fluids under the conditions of two distribution heights,eight different orifice configurations were measured with the visualization method,and the effect of liquid distribution on falling-film flow transitions was discussed.Five flow modes and four flow transitions were obtained by a high-speed camera.The measurement results agree well with literature data from reduced film Reynolds number and non-dimensional Galileo number,and the maximum relative deviation of transition Reynolds number is less than 15%.The experiment results show that the orifice configuration has a significant influence on inter-tube flow mode transition.The transition Reynolds number decreases with an increase in the hole diameter at a fixed adjacent hole distance while it increases with an increase in adjacent hole distance at a fixed hole diameter.The direct distribution causes larger transition boundary than the indirect one,and the difference between the transition boundaries under direct distribution and indirect distribution decreases with the increase in the non-dimensional characteristic parameter.The influence of the distribution height on flow mode transitions may be ignored when the non-dimensional characteristic parameter is greater than 40.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2012年第1期19-23,29,共6页 Journal of Xi'an Jiaotong University
基金 中央高校基本科研业务费专项资金资助项目
关键词 换热性能 流型转换 开孔规格 布液高度 转换边界 heat transfer performance flow mode transitions orifice configurations distribution height transition boundary
  • 相关文献

参考文献11

  • 1THOME J R. Engineering databook.Ⅲ [M]. Lau- sanne, Switzerland: Wolverine Tube, Inc., 2004; 244-248.
  • 2ROGERS J T. Laminar falling film flow and heat transfer characteristics on horizontal tubes [J]. The Canadian Journal of Chemical Engineering, 1981, 59 (2) :213-222.
  • 3FUJITA T, UEDA T. Heat transfer to falling liquid films and film breakdown: I Subcooled liquid films [J]. International Journal of Heat and Mass Trans- fer, 1976, 21(2): 97-108.
  • 4HU X, JACOBI A M. The intertube falling film: Part 1 Flow characteristics, mode transitions, and hyster- esis [J]. ASME Journal of Heat Transfer, 1996, 118 (3) :16-625.
  • 5ROQUES J F, DUPONT V, THOME J R. Falling film transitions on plain and enhanced tubes [J]. ASME Journal of Heat Transfer, 2002, 124(3) : 491- 499.
  • 6ARMBRUSTER R, MITROVIC J. Patterns of falling film flow over horizontal smooth tubes[C] // Proceed- ings of the 10th International Heat Transfer Confer- ence. Brighton, UK: Institution of Chemical Engi- neering, 1994: 275-280.
  • 7何茂刚,范华亮,王小飞,吕凯.水平管外降膜流动的膜厚测量和数值模拟[J].西安交通大学学报,2010,44(9):1-5. 被引量:22
  • 8HU X, JACOBI A M. The intertube falling film: Part 2 Mode effects on sensible heat transfer to a falling liquid film [J]. ASME Journal of Heat Transfer, 1996, 118(3): 626-633.
  • 9RIBATSKI G, JACOBI A M. Falling-film evaporation on horizontal tubes a-critical review [J]. International Journal of Refrigeration, 2005, 28(5): 635-653.
  • 10MITROVIC J. Flow structures of a liquid film falling on horizontal tubes [J]. Chemical Engineering Technology, 2005, 28(6): 684-694.

二级参考文献11

  • 1RIBATSHI G, JACOBI A M. Falling-film evaporation on horizontal tubes: a critical review[J]. International Journal of Refrigeration, 2005,28(5) : 635-653.
  • 2NUSSELT W. The condition of stream on cooling surface [J]. Chem Engineering Funds, 1982,1(2) :6-19.
  • 3BOWOUNIA K, CHAIBIB M T, TADRIST L. Analytical analysis of heat transfer in liquid film dripping around a horizontal tube[J]. Desalination, 2001,141 (1):7-13.
  • 4FUJITA Y, TSUTSUI M. Experimental and analytical study of evaporation heat transfer in failing films on horizontal tubes [C]//Proceedings of the 10th International Heat Transfer Conference. Brighton, UK: Institution of Chemical Engineers, 1994 : 175-180.
  • 5ROGERS J T, GOINDP S S. Experimental laminar failing film heat transfer coefficients on large diameter horizontal tubes[J].Canadian Journal of Chemical Engineering, 1989,67 (4) : 560-568.
  • 6SHEDD T A, NEWELL T A. Automated optical liquid film thickness measurement method [J]. Review of Scientific Instruments, 1998,69(12) : 4205-4213.
  • 7ZHANG J T, WANG B X, PENG X F. Falling liquid fin thickness measurement by an optical-electronic method [J ]. Review of Scientifique Instruments, 2000, 71(4) : 1883-1886.
  • 8DESEVAUX P, HOMESCU D, PANDAY P K, et al. Interface measurement technique for liquid film flowing inside small grooves by laser induced fluorescence[J]. Applied Thermal Engineering, 2002,22(5):521-534.
  • 9GSTOEHL D, ROQUES J F, CRISINEL P, et al. Measurement of falling film thickness around a hori zontal tube using a laser measurement technique[J]. Heat Transfer Engineering, 2004,25 (8) : 28-34.
  • 10WANG Xiaofei, HE Maogang, FAN Hualiang, et al. Measurement of falling film thickness around a horizontal tube using laser-induced fluorescence technique [J]. Journal of Physics, 2009,147(1):175-180.

共引文献21

同被引文献78

引证文献10

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部