期刊文献+

Cu_2ZnSnS_4纳米颗粒及其薄膜的制备与表征 被引量:8

Preparation and Characterization of Cu_2ZnSnS_4 Nanoparticles and Films
下载PDF
导出
摘要 采用热注入法,在油胺(OLA)中合成出Cu2ZnSnS4(CZTS)纳米颗粒,并在玻璃衬底上制备了薄膜,研究了不同合成温度对纳米颗粒生成的影响.通过X射线衍射仪、拉曼光谱仪、透射电子显微镜、扫描电子显微镜、紫外可见分光光度计对所得纳米晶材料的结构与成分、颗粒大小与形貌、光吸收谱进行了测试分析.研究结果表明:采用热注入法的最佳合成温度在260℃左右,该温度下生成的多晶CZTS纳米颗粒尺寸约10 nm,分散性良好,光学禁带宽度约1.5 eV. Cu2ZnSnS4 (CZTS) semiconductor is a promising materials for thin film solar cells. Cu2ZnSnS4(CZTS) nanoparticles were prepared via a hot-injection processing under high-purity N2 atmosphere, using Cu(acac)2, Zn(OAc)2, SnCl2.2H2O, sulfur powder as the precursors, oleylamine (OLA) as the solvent and the capping molecules. The CZTS thin films were deposited on glass substrates by drop-casting from the Sol of CZTS nanocrystals in toluene. The influence of reaction temperature on the phase structure and morphology of nanoparticles was studied. The samples were investigated by powder X-ray diffraction (XRD), Raman spectroscope, transmission electron microscope (TEM), scanning electron microscope (SEM) and UV-Vis-NIR spectroscope. The results indicated that the CZTS nanoparticles with 10 nm in size, good dispersion and an optical band gap of 1.5 eV was synthesized under the optimum reaction temperature of 260℃.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2012年第1期79-82,共4页 Journal of Inorganic Materials
基金 科技部项目(2006DFA52910) 宁波市工业公关项目(2008B10042 2009B21007) 宁波大学王宽诚幸福基金~~
关键词 热注入 Cu2ZnSnS4 纳米颗粒 薄膜 太阳能电池 hot-injection Cu2ZnSnS4 nanoparticles thin film solar cells
  • 相关文献

参考文献18

  • 1Pagliaro M, Ciriminna R, Palmisano G. Flexible solar cells. Chem. Sus. Chem., 2008, 1(11): 880-891.
  • 2Repins I, Contreras M A, Egaas B, et al. 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog. Photovolt. Res. Appl., 2008, 16(3): 235-239.
  • 3Tanaka K, Moritake N, Uchiki H. Preparation of Cu2ZnSnS4 thin films by sulfurizing Sol-Gel deposited precursors. Solar Energy Materials & Solar Cells, 2007, 91(13): 1199-1201.
  • 4Todorov T K, Reuter K B, Mitzi D B. High-efficiency solar cell with earth-abundant liquid-processed absorber. Adv. Mater., 2010, 22(20): E156-E159.
  • 5Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys., 1961, 32(3): 510-519.
  • 6Katagiri H. Cu2ZnSnS4 thin film solar cells. Thin Solid Films, 2005, 480-481: 426-432.
  • 7Bhattacharya R N, Batchelor W, Hiltner J F, et al. Thin-film CuIn1-xGaxSe2 photovoltaic cells from solution-based precursor layers. Appl. Phys. Lett., 1999, 75(10): 1431-1437.
  • 8Mitzi D B, Yuan M, Liu W, et al. A high-efficiency solution- deposited thin-film photovoltaic device. Adv. Mater., 2008, 20(19): 3657-3662.
  • 9Ennaoui A, Lux-Steiner M, Weber A, et al. Cu2ZnSnS4 thin film solar cells from electroplated precursors: novel low-cost perspective. Thin Solid Films, 2009, 517(7): 2511-2514.
  • 10Gur I, Fromer N A, Geier M L, et al. Air-stable all-inorganic nanocrystal solar cells processed from solution. Science, 2005, 310(5747): 462-465.

同被引文献167

引证文献8

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部