期刊文献+

基于新型粒子群优化粒子滤波的故障诊断方法 被引量:10

Fault diagnosis based on new particle swarm optimization particle filter
下载PDF
导出
摘要 针对基于粒子群优化算法的粒子滤波(PSO-PF)算法精度不高,容易陷入局部最优,难以满足电厂温控系统故障诊断的需求,提出一种适用于故障诊断的新型粒子群优化粒子滤波(NPSO-PF)算法。该算法引入社会个体对群体的认知规律优化了粒子更新的方式,并且完善了粒子速度的更新策略,对优势速度赋有较小概率的变异,提高了粒子的寻优能力,同时随机初始化劣势速度,保证了样本的多样性。实验结果表明,与PSO-PF相比,NPSO-PF提高了故障检测的精度和鲁棒性,可以有效地应用于温控系统故障的诊断。 Particle Fiher based on Particle Swarm Optimization (PSO-PF) algorithm is not precise and easily trapped in local optimum, which can hardly satisfy the requirement of fault diagnosis of temperature control system in power plant. To solve these problems, a new particle swarm optimization particle filter named NPSO-PF suitable for fault diagnosis was proposed. This algorithm introduced the cognition rule of individuals to groups to optimize the method for updating particles and improved the speed update strategy. As a result, the superior particle velocity can mutate with a small probability and improve the search ability. Meanwhile, due to the random, initialization of on inferior particle, the diversity of samples is ensured. The simulation results show that NPSO-PF improves the precision and robustness compared with PSO-PF, and it is suitable for fault diagnosis of temperature control system.
出处 《计算机应用》 CSCD 北大核心 2012年第2期432-435,439,共5页 journal of Computer Applications
基金 国防重点预研项目(40405020201) 高等学校博士学科点专项科研基金资助项目(200802881017) 南京理工大学自主科研专项计划自主项目(2010ZYTS051) 南京理工大学紫金之星基金资助项目(AB41381)
关键词 粒子群优化 粒子滤波 温控系统 变异 故障诊断 Particle Swarm Optimization (PSO) Particle Fiher (PF) temperature control system mutation faultdiagnosis
  • 相关文献

参考文献15

二级参考文献117

共引文献180

同被引文献82

引证文献10

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部