摘要
The green environmental laws and regulations are legislated, implemented, and enforced in many countries and economic regions. The provision of green products and services are the fast growing trend in global consumer markets. Therefore, introducing new products with environmental considerations becomes critical for global brand manufacturers. This research depicts an integrated and intelligent eco- and inno-product design methodology to support environmental friendly green product development. The methodology adopts approaches, such as life cycle assessment (LCA), quality function deploymnet for environement (QFDE), theory of inventive problem solving (TRIZ) and back-propagation network (BPN) to achieve eco- and inno-design objectives. LCA evaluates and compares the environmental impacts of production. QFDE transforms high-level concerns of environment into design requirements. When there are many historical QFDE data, the BPN prediction model is trained and deployed to automate the specifications of green design improvement. TRIZ is to support the creation of innovative product design ideas effectively and efficiently during the concept design stage. Finally, this paper presents two eco-design cases of power adaptor to demonstrate the proposed methodology.
The green environmental laws and regulations are legislated, implemented, and enforced in many countries and economic regions. The provision of green products and services are the fast growing trend in global consumer markets. Therefore, introducing new products with environmental considerations becomes critical for global brand manufacturers. This research depicts an integrated and intelligent eco- and inno-product design methodology to support environmental friendly green product development. The methodology adopts approaches, such as life cycle assessment (LCA), quality function deploymnet for environement (QFDE), theory of inventive problem solving (TRIZ) and back-propagation network (BPN) to achieve eco- and inno-design objectives. LCA evaluates and compares the environmental impacts of production. QFDE transforms high-level concerns of environment into design requirements. When there are many historical QFDE data, the BPN prediction model is trained and deployed to automate the specifications of green design improvement. TRIZ is to support the creation of innovative product design ideas effectively and efficiently during the concept design stage. Finally, this paper presents two eco-design cases of power adaptor to demonstrate the proposed methodology.
基金
supported by the National Science Council (NSC) in Taiwan