期刊文献+

基于图论方法的路径规划应用 被引量:9

The Application of the Path Planning Based on Graph Theory
下载PDF
导出
摘要 利用图论方法来实现机器人寻优路径规划。图论是一种新的数学分支,对于求解最优化问题很有实用价值。它与通常采用的路径规划方法比较,如势能函数法、网格法、人工神经网络方法、遗传算法等,在解决两点间最短距离问题上尤具优势,从起始点出发到达目标点的寻优路径策略更具有简单实用性,具有方法简单、算法容易实现的优点。仿真实验显示了该算法可以有效地解决机器人对任意两点间的路线进行寻优问题,取得了较好的结果。 The paper presents the path planning algorithm for robot soccer based on graph theory. Graph theory is a new embranchment in mathematics, and it has practicality very well in solving the problem of optimization. It has the advantages such as more simple method, less work than any other path planning methods, as which the potential fimction method, the grid method, neural networks, genetic algorithms, etc. in solving the shortest distance between any two points. The result in simulation is more perfect.
出处 《电测与仪表》 北大核心 2012年第1期94-96,共3页 Electrical Measurement & Instrumentation
基金 国家自然科学基金资助项目(60975067/F030304)
关键词 图论 机器人 路径规划 graph theory, robot,path planning
  • 相关文献

参考文献9

  • 1Martin RiedmilIer, Thomas Gabel. On Experiences in a Complex and Competitive Gaming Domain: Reinforcement Learning Meets RoboCup [J]. IEEE Symposium on Computational Intelligence and Games. 2007, 1 (4): 17-23.
  • 2Mahdi Naser Moghadasi, Abolfazl Toroghi Haghighat, Saeed Shiriy Ghidary. Evaluating Markov Decision Process as A Model For Decision Making Under Uncertainty Environment [C]. Proceedings of the Sixth International Conference on Machine Learning and Cybernetics. Hong Kong, 2007: 2446-2450.
  • 3K.H. Hwang, and N. Ahuja. A Potential Field Approach to Path Planning [J].IEEE Transactions on Robotics and Automation. 1992,8(1):23-32.
  • 4R.H.T. Chan, P.K.S. Tam and D.N.K. Leung. Robot Navigation in Unknown Terrains Via Muhi-resolution Grid Maps [J]. Proc. of lhe IEEE IECON'91 Inter. Conf. on Industrial Electronics, Control and Instrumentation. 1991,2,1138~ 1143.
  • 5Colorni A. Heuristics from nature for hard ombinalorial optimizalion problems [J].Int Trans in Opnl tles. 1996,3(1): 1-21.
  • 6周华平,冯金光.仿人步行机器人机构设计[J].电测与仪表,2005,42(2):9-12. 被引量:8
  • 7K. Lushev, F.A.; Bogdanov, A.A.Neural Algorilhms of Path Planning tot Mobile Robots in Transporl Systems [C]. Neural Networks, 1999. IJCNN' 99. lnternatinn, Joint Conference on volume. 1999,6:381-3866.
  • 8Dorigo M., Gambardella L.M..A Cooperative Learning Approach to the Traveling Salesman Problem [J]. IEEE Transactions on Evolutionary Cnmputation.1997, 1(1):53-66.
  • 9吴晓涛,孙增圻.用遗传算法进行路径规划[J].清华大学学报(自然科学版),1995,35(5):14-19. 被引量:76

二级参考文献4

  • 1邵世煌,第二届全国智能控制专家讨论会,1994年
  • 2吴晓涛,第二届全国智能控制专家讨论会,1994年
  • 3赵瑞安,非线性最优化理论和方法,1992年
  • 4刘建群,黄浩权,段正澄,熊有伦.DSP在机器人控制系统中的应用[J].组合机床与自动化加工技术,2001(2):25-26. 被引量:2

共引文献82

同被引文献65

引证文献9

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部