期刊文献+

THE MAXIMUM PRINCIPLE FOR PARTIALLY OBSERVED OPTIMAL CONTROL OF FORWARD-BACKWARD STOCHASTIC SYSTEMS WITH RANDOM JUMPS 被引量:4

THE MAXIMUM PRINCIPLE FOR PARTIALLY OBSERVED OPTIMAL CONTROL OF FORWARD-BACKWARD STOCHASTIC SYSTEMS WITH RANDOM JUMPS
原文传递
导出
摘要 This paper studies the problem of partially observed optimal control for forward-backward stochastic systems which are driven both by Brownian motions and an independent Poisson random measure. Combining forward-backward stochastic differential equation theory with certain classical convex variational techniques, the necessary maximum principle is proved for the partially observed optimal control, where the control domain is a nonempty convex set. Under certain convexity assumptions, the author also gives the sufficient conditions of an optimal control for the aforementioned optimal optimal problem. To illustrate the theoretical result, the author also works out an example of partial information linear-quadratic optimal control, and finds an explicit expression of the corresponding optimal control by applying the necessary and sufficient maximum principle.
作者 Hua XIAO
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2011年第6期1083-1099,共17页 系统科学与复杂性学报(英文版)
基金 This research is supported by the National Nature Science Foundation of China under Grant Nos 11001156, 11071144, the Nature Science Foundation of Shandong Province (ZR2009AQ017), and Independent Innovation Foundation of Shandong University (IIFSDU), China.
关键词 Forward-backward stochastic differential equations maximum principle partially observed optimal control random jumps. 正倒向随机系统 系统最优控制 最大值原理 线性二次型最优控制 跳跃 最优控制问题 微分方程理论 随机测度
  • 相关文献

参考文献3

二级参考文献17

  • 1SHI Jing-Tao WU Zhen.The Maximum Principle for Fully Coupled Forward-backward Stochastic Control System[J].自动化学报,2006,32(2):161-169. 被引量:14
  • 2Y. Hu, and S. Peng, Solution of forward-backward stochastic differential equations, Proba. Theory and Related Fields, 1995, 103: 273-283.
  • 3S. Peng and Z. Wu, Fully coupled forward-backward stochastic differential equations and applications to optimal control, SIAM J. Control Optim., 1999, 37: 825-843.
  • 4J. Yong, Finding adapted solution of forward backward stochastic differential equations-method of continuation, Proba Theory and Related Fields, 1997, 107: 537-572.
  • 5W. M. Wonham, On the separation theorem of stochastic control, SIAM J. Control Optim., 1968,6: 312-326.
  • 6J. M. Bismut, Controle des systemes lineaires quadratiques: applications de l'integrale stochastique, Lecture Notes in Mathematics, vol.649, Seminaire de Probabilites XII, Proceedings, Strasbourg, 1976-1977, Edite par C. Dellacherie, P. A. Meyer et M. Weil, Springer-Verlag, 1978, 180-264.
  • 7S. Chen, X. Li and X. Zhou, Stochastic linear quadratic regulators with indefinite control weight costs, SIAM J. Control Optim. 1998, 36: 1685-1702.
  • 8S. Peng, Problem of eigenvalues of stochastic Hamiltonian systems with boundary conditions,Stochastic Processes and Their Applications, 2000, 88: 259-290.
  • 9A. Friedman, Differential Games, Wiley-Interscience, New York, 1971.
  • 10A. Bensoussan, Point de Nash dans de cas de fonctionnelles quadratiques et jeux differentiels a Npersonnes, SIAM J. Control, 1974, 12(3).

共引文献35

同被引文献9

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部