期刊文献+

分段切换模型参数寻优的车道检测算法 被引量:5

Searching Optimum Solution of Multi-sectional Switch Model Parameter for Lane Detection Algorithm
下载PDF
导出
摘要 车道检测算法的研究是智能车辆基于道路标识线或边界信息自主导航的首要环节。根据道路先验知识和驾驶员视觉处理经验,将道路图像分为近景和远景区域,近景区使用直线模型拟合车道线,远景区切换直线模型或三次曲线模型匹配车道线。融合道路图像的梯度幅值、梯度方向和灰度特征信息,建立概率判别函数,采用基于遗传算法操作的改进粒子群优化算法,快速搜索关于概率函数的最优模型参数,实现对车道的检测。对实际道路图像的试验结果表明,在路面存在阴影、光照不均匀、车辆遮挡以及车道标识线污损情况下,该算法都能很好地识别车道,具有很强的鲁棒性。 It is principal to detect lane robustly and rapidly for intelligent vehicle based on the information of road marking or road region.The road image is divided into tow parts called near area and far area based on pre-knowledge and human visual experience.A linear model is adopted to fit the lane marking in near area,while in far area,the lane marking with the lane model is switched between linear model and cubic curve model.Combined with the gradient value,gradient direction and gray information,discriminant function of the probability is derived.Then the improved Particle Swarm Optimization(PSO) algorithm combined with genetic algorithm operators is used to quickly search the optimal model parameter of the discriminant function to implementation lane detection.The results of the real road image experiment show the proposed method can robustly and rapidly detect the lane markings even if there are some interference factors in the road such as shadow,non-uniform illuminance,vehicle barrier and soiled lane boundaries.
出处 《光电工程》 CAS CSCD 北大核心 2012年第1期17-23,共7页 Opto-Electronic Engineering
基金 军械工程学院原始创新基金(YSCX004)
关键词 智能车辆 车道检测 切换模型 判别函数 粒子群优化 intelligent vehicle lane detection switch model discriminant function PSO
  • 相关文献

参考文献13

  • 1郑榜贵,田炳香,段建民.基于Kalman预测及逆投影的车道识别技术[J].计算机工程与设计,2009,30(6):1548-1551. 被引量:6
  • 2Clatudio Rosito Jung, Christian Roberto Kelber. Lane following and lane departure using a linear-parabolic model [J]. Image and VisionComputing(S0262-8856), 2005, 23(13): 1192-1202.
  • 3Lee Joon Woong, Yi Un Kun. A lane-departure identification based on LBPE, Hough transform, and linear regression [J]. Computer Vision and Image Understanding(S1077-3142), 2005, 99(3): 359-383.
  • 4Denasi S, Quaglia G. Early obstacle detection using region segmentation and model based edge grouping [C]//Proeeedings of IEEElnternationalConferenceonlnteUigentVehicles, Stuttgart, Germany, USA: IEEESociety, 1998: 257-262.
  • 5CHEN Qiang, WANG Hong. A real time lane detection algorithm based on a hyperbola-pair model [C]//IEEE Intelligent Vehicles Symposium, Tokyo, Japan, 2006: 510-515.
  • 6Yue Wang, Eam Khwang Teoh, Dingggang Shen. Lane detection and tracking using B-Snake [J]. Image and Vision Computing(S0262-8856), 2004, 22(4): 269-280.
  • 7郭磊,李克强,王建强,连小珉.用于车道识别的分段切换车道模型[J].公路交通科技,2006,23(11):90-94. 被引量:10
  • 8张润生,黄小云,马雷.复杂环境下车辆前方多车道识别方法[J].农业机械学报,2010,41(5):24-29. 被引量:4
  • 9Alberto Broggi, Stefano Cattani. An agent based evolutionary approach to path detection for off-road vehicle guidance [J]. Pattern Recognition Letters(S0167-8655), 2006, 27(11): 1164-1173.
  • 10陈莹,吴定会.基于全局变形模板的快速车道检测算法[J].系统仿真学报,2007,19(21):5063-5066. 被引量:8

二级参考文献52

  • 1罗亚中,唐国金.两层非线性规划问题的并行模拟退火全局优化[J].系统仿真学报,2005,17(5):1040-1044. 被引量:13
  • 2王荣本,余天洪,顾柏园,郭烈.基于边界的车道标识线识别和跟踪方法研究[J].计算机工程,2006,32(18):195-196. 被引量:16
  • 3王晨昊,汤晓安,陈敏,陈鸿.一种基于地形匹配的自适应道路建模方法[J].系统仿真学报,2006,18(10):2824-2826. 被引量:9
  • 4郭磊,李克强,王建强,连小珉.用于车道识别的分段切换车道模型[J].公路交通科技,2006,23(11):90-94. 被引量:10
  • 5Furukawa Y.Status and future direction of intelligent drive assist technology[C].Dearbom(Ml),USA:Proc of the 2000 IEEE Intelligent Transportation Systems,2000:113-118.
  • 6Lai A H S,Yung N H C.Lane detection by orientation and length discrimination[J].IEEE Trans on Systems,Man and Cybemetics, 2000,30(4):539-548.
  • 7Wang C-C, Thorpe C. Simultaneous localization and mapping with detection and tracking of moving objects[J].International Journal of Robotics Research,2007,26(9):889-916.
  • 8Jia Z,Balasuriya A,Challa S.Recent developments in vision based target tracking for autonomous vehicles navigation[C]. Toronto, Canada: Proc of the 2006 IEEE Intelligent Transportation Systems Conference,2006:765-770.
  • 9Takahashi A,Ninomiya Y, Ohta M,et al.Rear view lane detection by wide angle camera[C].Proc of the 2002 IEEE Intelligent Vehicle Symposium,2002:148-153.
  • 10Li Q,Zheng N,Cheng H.Springrobot:a prototype autonomous vehicle and its algorithms for lane detection[J].IEEE Transactions on Intelligent Transportation Systems,2004,5(4):300-308.

共引文献33

同被引文献44

  • 1雷涛,樊养余,王小鹏,王履程.基于形态学结构元素建模的车道线检测算法[J].计算机应用,2009,29(2):440-443. 被引量:21
  • 2陈无畏,孙海涛,李碧春,王启瑞,李进.基于标识线导航的自动导引车跟踪控制[J].机械工程学报,2006,42(8):164-170. 被引量:35
  • 3陈勇,黄席樾,唐高友,刘俊.基于机器视觉的车道检测与二维重建方法[J].仪器仪表学报,2007,28(7):1205-1210. 被引量:14
  • 4Z. W. Kim. Robust Lane Detection and Tracking in Challenging Scenarios [J]. IEEE Transactions on Intelligent Transportation Systems, 2008, 9(1): 16-26.
  • 5.lUNG H, MIN J, KIM J. An efficient lane detection 'algorithm for lane departure detection [ C]//IVS 2013: Proceedings of the 2013 Intelligent Vehicles Symposium. Piscataway: IEEE, 2013:976-981.
  • 6MEI T, LIANG H, KONG B, et al. Development of ‘intelligent pi- oneer' unmanned vehicle [ C]//IVS 2012: Proceedings of the 2012 Intelligent Vehicle Symposium. Piscataway: IEEE, 2012: 938- 943.
  • 7WANG J, GU F, ZHANG C, et al. Lane boundary detection based on parabola model [ C]//ICIA 2010: Proceedings of the 2010 Inter- national Conference on Information and Automation. Piscataway:1EEE, 2010:1729 - 1734.
  • 8WANG J, AN X. A multi-step curved lane detection algorithm based on hyperbola-pair model [ C]// ICAL 2010: Proceedings of the 2010 International Conference on Automation and Logistics. Pis- cataway: IEEE, 2010:132 - 137.
  • 9GUO C, MITA S, MCALLESTER D. Lane detection and tracking in challenging environments based on a weighted graph and integrated cues [ C]/! 1ROS 2010: Proceedings of the 2010 International Con- ference on Intelligent Robots and Systems. Piscataway: IEEE, 2010:5543-5550.
  • 10MASTORAKIS G, DAVIES E R. Improved line detection algorithm for locating road lane markings [J]. Electronics Letters, 2011, 47 (3) : 183 - 184.

引证文献5

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部