期刊文献+

Nonlocal unambiguous discrimination among N nonorthogonal qudit states lying in a higher-dimensional Hilbert space 被引量:4

Nonlocal unambiguous discrimination among N nonorthogonal qudit states lying in a higher-dimensional Hilbert space
原文传递
导出
摘要 We give a strategy for nonlocal unambiguous discrimination (UD) among N linearly independent nonorthogonal qudit states lying in a higher-dimensional Hilbert space. The procedure we use is a nonlocal positive operator valued measurement (POVM) in a direct sum space. This scheme is designed for obtaining the conclusive nonlocal measurement results with a finite probability of success. We construct a quantum network for realizing the nonlocal UD with a set of two-level remote rotations, and thus provide a feasible physical means to realize the nonlocal UD. We give a strategy for nonlocal unambiguous discrimination (UD) among N linearly independent nonorthogonal qudit states lying in a higher-dimensional Hilbert space. The procedure we use is a nonlocal positive operator valued measurement (POVM) in a direct sum space. This scheme is designed for obtaining the conclusive nonlocal measurement results with a finite probability of success. We construct a quantum network for realizing the nonlocal UD with a set of two-level remote rotations, and thus provide a feasible physical means to realize the nonlocal UD.
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第1期55-59,共5页 中国科学:物理学、力学、天文学(英文版)
基金 supported by the Natural Science Foundation of Guangdong Province, China (Grant No. 06029431)
关键词 NONLOCAL unambiguous discrimination linearly independent nonorthogonal states positive operator valued measurement (POVM) remote rotation Hilbert空间 非正交 高维 非局部 线性无关 直和空间 成功概率 量子网络
  • 相关文献

参考文献19

  • 1Bennett C H. Quantum cryptography using any two nonorthogonal states. Phys Rev Lett, 1992, 68(21): 3121-3124.
  • 2Bennett C H, Brassard G, Crepeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 1993, 70(13): 1895-1899.
  • 3Qiu D, Lvjun L L. Relation between minimum-error discrimination and optimum unambiguous discrimination. Phys Rev A, 2010, 82(3): 032333.
  • 4Ivanovic I D. How to differentiate between non-orthogonal states? Phys Lett A, 1987, 123(6): 257-259.
  • 5Dieks D. Overlap and distinguishability of quantum states. Phys Lett A, 1988, 126(5-6): 303-306.
  • 6Peres A. How to differentiate between non-orthogonal states. Phys Lett A, 1988, 128(1-2): 19.
  • 7Jaeger G, Shimony A. Optimal distinction between two non-orthogonal quantum states. Phys Lett A, 1995, 197(2): 83-87.
  • 8Chefles A, Barnett S M. Optimum unambiguous discrimination between linearly independent symmetric states. Phys Lett A, 1998, 250(4-6): 223-229.
  • 9Hayashi A, Horibe M, Hashimoto T. Quantum pure-state identification. Phys Rev A, 2005, 72(5): 052306.
  • 10Bergou J A, Buzek V, Feldman E, et al. Programmable quantum-state discriminators with simple programs. Phys Rev A, 2006, 73(6): 062334.

同被引文献15

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部