期刊文献+

量子谐振子蚁群算法 被引量:6

Ant colony optimization of quantum harmonic oscillators
下载PDF
导出
摘要 通过分析目前蚁群算法存在的问题和改进算法的优点,发现量子谐振子系统物理特性能够保证算法最终的收敛性。通过量子谐振子高能态到低能态的转变过程和信息素的增加过程相对应,从而更新信息素,在物理上给算法提供了理论依据。通过量子旋转门改变城市转移规则,通过泡利矩阵变异使蚂蚁有更广阔的空间。综合量子谐振子以上的优点,提出了量子谐振子蚁群算法,并在旅行商问题(TSP)上取得了较好的寻优路径。 The authors analyzed the current problems of ant colony algorithm and the advantages of improved algorithm,and then found that the physical properties of quantum harmonic oscillators would guarantee the convergence of final algorithm.Changing process of the quantum harmonic oscillators from high energy state to low energy state and increment of pheromone had a corresponding relationship,and thereby updated pheromone,and physically it provided the algorithmic theoretical basis.Quantum rotation door changed the transfer rules of city.Mutations by Pauli matrix allowed ants have a wider space.Integrating the above advantages of quantum harmonic oscillator,the authors proposed a quantum harmonic oscillator ant colony algorithm,and achieved better optimization path in the Traveling Saleman Problem(TSP) problems.
出处 《计算机应用》 CSCD 北大核心 2011年第A02期54-56,69,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60702075) 四川省青年科学基金资助项目(09ZQ026-068)
关键词 蚁群算法 量子谐振子 旋转门 泡利矩阵 信息素 ant colony algorithm quantum harmonic oscillator rotation door Pauli matrix pheromone
  • 相关文献

参考文献13

  • 1COLORNI A, DORIGO M, MANIEZZO V, et al. Distributed optimization by ant colonies[ C]//Proceedings of the 1 st European Conferonce on Artificial Life. Cambridge Paris: Elesvier Publishing, 1991:134-142.
  • 2DORIGO M. Optimization, learning and natural algorithms[ D]. Miland: Italy: Politecnico di Milano Department of Electronics, 1992.
  • 3GAMBARDELLA L M, DORIGO M. Ant-Q: A reinforcement learning approach to the traveling salesman problem[ EB/OL]. [ 2011-03 -25]. ftp://ftp, idsia, ch/pub/luca/papers/m195-antq, ps. gz.
  • 4HAN K-H, KIM J-H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(6): 580-592.
  • 5HAN K-H, KIM J-H. Quantum-inspired evolutionary algorithms with a new termination criterion, Hgate and two-phase scheme [ J]. IEEE Transactions on Evolutionary Computation, 2004, 8(2) : 156-168.
  • 6赵俊生,李跃光,张远平.一种改进的量子蚁群算法及其应用[J].计算机应用与软件,2010,27(7):133-135. 被引量:9
  • 7李盼池,李士勇.求解连续空间优化问题的量子蚁群算法[J].控制理论与应用,2008,25(2):237-241. 被引量:47
  • 8李盼池,杨雨,张巧翠.相位编码量子蚁群算法及在连续优化中的应用[J].计算机应用研究,2010,27(12):4450-4453. 被引量:4
  • 9SUNJUN,FENGBIN,XUWENBO.ParticleSWSlTlloptimizationwithparticleshavingquantumbehavior[C]//CongressonEvolu-tionaryComputation2004.Washington,DC:IEEEComputerSocie-ty,2004:325-331.
  • 10冯斌,须文波.基于粒子群算法的量子谐振子模型[J].计算机工程,2006,32(20):18-21. 被引量:11

二级参考文献34

  • 1程志刚,陈德钊,吴晓华.连续蚁群优化算法的研究[J].浙江大学学报(工学版),2005,39(8):1147-1151. 被引量:9
  • 2李士勇,李盼池.基于实数编码和目标函数梯度的量子遗传算法[J].哈尔滨工业大学学报,2006,38(8):1216-1218. 被引量:60
  • 3严晨,王直杰.以TSP为代表的组合优化问题研究现状与展望[J].计算机仿真,2007,24(6):171-174. 被引量:17
  • 4Han K H,Kim J H.Quantum inspired evolutionary algorithms with a new termination criterion H Gate,and Two-Phase Scheme[J].IEEE Transactions on Evolutionary Computation,2004,8(2):156-169.
  • 5Han K H,Kim J H.Genetic Quantum Algorithm and Its Application to Combinatorial Optimization Problem[C]//Proceedings of the 2000 IEEE Congress on Evolutionary Computation,2000:1354-1360.
  • 6Maniezzo V.Exact and approximate non-deter ministic tree search procedures for the quadratic assignment problem[J].INFORMS Journal on computing,1999,11(4):358-369.
  • 7Cordón O,Deviana I F,Herrera F.Analysis of the best-worst Ant system and its variants on the TSP[J].Mathware and soft com-putting,2002,9(2-3):177-192.
  • 8Blum C,Dorigo M.(2004).The hyper-cube framework for ant colony optimization[R].IEEE Transactions on systems,Man and cyberneticsPart B,to appear,2001:399-403.
  • 9Han K2H.Genetic quant um algo rit hm and its application to combinatorial optimization problem[C]//Proceedings of IEEE the 2000 Congress on Evolutionary Computation.San Diego,USA,IEEE Press,2000:1354-1360.
  • 10Han K H,K M J H.Quantum-inspired Evolutionary Algorithms with a New Termination Criterion,H,Gate,and Two-Phase Scheme[J].IEEE Trans on Evolutionary Computation,2004,8(2):156-169.

共引文献66

同被引文献70

  • 1熊焰,陈欢欢,苗付友,王行甫.一种解决组合优化问题的量子遗传算法QGA[J].电子学报,2004,32(11):1855-1858. 被引量:50
  • 2冯斌,须文波.基于粒子群算法的量子谐振子模型[J].计算机工程,2006,32(20):18-21. 被引量:11
  • 3周世勋.量子力学教程[M].北京:高等教育出版社,2006:161.
  • 4WANG SHANSHAN, SUN LEI. Dynamic rotation gate quantum al- gorithm and performance analysis [ C ]// 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems. Wash- ington, DC: IEEE Press, 2010:366-369.
  • 5ZttAO WE1, YE SAN, SHI HU1SHU. Fuzzy quantum-behaved l?ar- title swarm optimiTation[ C]// 2010 International Symposium on Computational Intelligence and Design. Washington, DC: IEI'; Press, 2010:49 -52.
  • 6V1DYA R C, PHANEENDR H D, SHIVAKUMA M S. Quantum algorithm and hard problems [ C]// 2006 5th IEEE Internet Conference on Congnitive Informafics. Washington, DC: IEEE Press, 2006:783-787.
  • 7TENG HAO, ZHAO BAOHUA, YANG BINGRU. An improvet mutative scale chaos optimization quantum genetic algorithm[ C]/1 International Conference on Natural Computation. Washington,I DC: IEEE Press, 2008:301-305.
  • 8JIN YANXIA, ZHOU HANCHANG. A particle swarm optimization algorithm based on hyper-ehaotie sequences [ C]// The l st International Conferenee on Information Science and Engineering. Washington, DC: IEEE Press, 2009:3951 -3954.
  • 9CAI YANGGUANG, ZHANG M1NJIE, CAI HAO. A hybrid chaotic quantum ewlutionary algorithm [ C ]// 2010 IEEE lnterna!ioml Conference on Intelligent Computing and Intelligent System. Washington, DC: IEEE Press, 2010:771-776.
  • 10SUN JUN, FENG BIN, XU WENBO. Particle swarm optimization with particles having quantum behavior[ C]// CEC2004: Congresson Evolutionary Computation. Washington, DC: [EEE Press, 2004:325-331.

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部