摘要
精细积分法既可得到在计算机精度意义下的精确解,又能够保持哈密顿体系的辛结构。其是求解一阶线性常微分方程组的精确数值方法,既可以用于时间域的初值问题,又可以应用于空间域的两点边值问题。运用精细积分法求解微层区段矩阵,并对微层区段矩阵合并得到整个层状地基的区段矩阵,最终得到层状地基的动力柔度值。运用数值算例验证了本文方法的计算精度。
The integration method used here is a precise numerical method for solving sets of first order linear ordinary differential equations with specified two-point boundary value conditions for space domain problems,or with specified initial value conditions for time domain problems.It can produce numerical results up to the precision of the computer used and preserve the symplectic structure of the Hamilton system.The segment matrix of micro layer is obtained by using the precise integration method,and then,through merging segment matrix of micro layer,we evaluate the segment matrix of the whole foundation.Finally,the dynamic flexibility of layered elastic foundation is calculated by incorporating the radiation condition of boundary into the segment matrix of the whole foundation.In the end,accuracy of this method is verified by numerical examples.
出处
《防灾减灾工程学报》
CSCD
2011年第5期512-516,共5页
Journal of Disaster Prevention and Mitigation Engineering
基金
中德合作研究项目(GZ566)
教育部博士点基金项目(200801411099)
清华大学水沙科学国家重点实验室开放基金项目(shlhse-2010-C-03)资助
关键词
频率波数域
层状地基
动力柔度
精细积分法
frequency-wavenumber domain
layered foundation
dynamic flexibility
the precise integration method