期刊文献+

基于粒子滤波的AUV组合导航方法 被引量:9

Particle Filter-Based AUV Integrated Navigation Methods
下载PDF
导出
摘要 讨论了粒子滤波器和RB(Rao-Blackwellised)粒子滤波器两种滤波方法在组合导航中的应用,给出了组合导航算法用于自治水下航行器(AUV)的具体数学模型,并且与拓展卡尔曼滤波器的导航结果进行比较.利用AUV湖上试验验证了3种算法的导航性能,试验结果表明RBPF组合导航算法能够获得最好的导航精度;然而通过对算法进行分析,发现其计算复杂度高于其余两种滤波算法. Applications of the particle filter(PF) and Rao-Blackwellised particle filter(RBPF) to AUV(autonomous underwater vehicle) integrated navigation are discussed.The specific mathematical model for implementation of the integrated navigation method on AUV is presented.And those methods are compared with the extended Kalman filter(EKF).The results of AUV navigation experiment at Qiandao Lake show that the method based on RBPF can provide the best navigation performance.However,algorithm analysis shows that this method requires more computational effort compared with the other two filter algorithms.
出处 《机器人》 EI CSCD 北大核心 2012年第1期78-83,共6页 Robot
基金 国家863计划资助项目(2009AA12Z308) 中央高校基本科研业务费专项资金资助项目(2011XZZX003) 机器人学国家重点实验室资助项目(RLO200817)
关键词 自治水下航行器 组合导航 粒子滤波器 Rao-Blackwellised粒子滤波器 拓展卡尔曼滤波器 AUV(autonomous underwater vehicle) integrated navigation particle filter RBPF(Rao-Blackwellised particle filter) EKF(extended Kalman filter)
  • 相关文献

参考文献14

  • 1Fiorelli E, Leonard N E, Bhatta P, et al. Multi-AUV control and adaptive sampling in Monterey bay[J]. IEEE Transactions on Oceanic Engineering, 2008, 31 (4): 935-948.
  • 2Ura T, Kojima J, Nakano T, et al. Experimental result of AUV- based acoustic tracking system of sperm whales[C]//OCEANS. Piscataway, NJ, USA: IEEE, 2007: 1-5.
  • 3Kobayashi M, Ando T, Honda M, et al. System design of an autonomous underwater robot 'DaryaBird' [C/OL]//AUVSI& ONR's 13th International Autonomous Underwater Vehicle Competition. 2010: 1-7. [2010-07-13]. http://www.auvsi.org/.
  • 4Leonard J J, Bennett A A, Smith C M, et al. Autonomous underwater vehicle navigation[R]. Massachusetts, MA, USA: MIT Marine Robotics Laboratory, 1998.
  • 5Manolakis D G, Ingle V K, Kogon S M. Statistical and adaptive signal processing: Spectral estimation, adaptive filtering and array processing[M]. Norwood, MA, USA: Artech, 2000: 378- 387.
  • 6Zhang B, Xu W, Chen Q, et al. Extended Kalman filter-based data fusion for inertial-Doppler AUV navigation[C]//IEEE/OES 6th International Symposium on Underwater Technology. Piscataway, NJ, USA: IEEE, 2009: 227-232.
  • 7李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60
  • 8Sun E Xu W, Li J L, et al. Enhancement of the aided inertial navigation system for an AUV via micronavigation[C]//OCEANS. Piscataway, NJ, USA: IEEE, 2010: 1-4.
  • 9Nordlund P J, Gustafsson E Sequential Monte Carlo filtering techniques applied to integrated navigation systems[C]// American Control Conference. Piscataway, NJ, USA: IEEE, 2001: 4375-4380.
  • 10Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[C]//IEE Proceedings on Radar and Signal Processing. Piscataway, NJ, USA: IEEE, 1993, 140: 107-113.

二级参考文献1

共引文献59

同被引文献102

引证文献9

二级引证文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部