期刊文献+

复杂背景下基于贝叶斯-全概率联合估计的前景检测 被引量:10

Foreground Object Detection in Complex Background Based on Bayes-total Probability Joint Estimation
下载PDF
导出
摘要 针对复杂背景下前景提取较为困难或者提取准确率较低等问题,该文提出了基于贝叶斯-全概率联合估计的目标检测模型并引入了背景误差控制变量的概念。通过选择适当的特征向量,在贝叶斯-全概率估计模型下,背景像素将会分为静止与运动两种不同的类型,进而准确提取前景像素点。实验结果表明,该模型是一个较为通用的目标检测模型,在目标提取时,该文算法对各种类型的视频背景环境(包括复杂背景)都具有较好的适用效果。 For the difficulty or low accuracy on foreground extraction in a complex environment,this paper proposes Bayes-total probability joint estimation for the detection and segmentation of foreground objects and the definition of background error control variable.Under the criterion of Bayes-total probability joint estimation,background pixels will be divided into stationary and moving types by choosing a proper feature vector,and foreground pixels can be detected accurately.Experiment results show the proposed method is a more general model for target detection,and it is also promising in extracting foreground objects under different kinds of background from video(containing complex background).
出处 《电子与信息学报》 EI CSCD 北大核心 2012年第2期388-392,共5页 Journal of Electronics & Information Technology
基金 国家973计划项目(2007CB311100) 广东省高等学校高层次人才项目(201079) 广州市科技计划(11C42080722)资助课题
关键词 目标检测 复杂背景 贝叶斯-全概率联合估计 误差控制变量 Target detection Complex background Bayes-total probability joint estimation Error control variable
  • 相关文献

参考文献5

二级参考文献82

  • 1王兆魁,张育林.一种CCD星图星点快速定位算法[J].空间科学学报,2006,26(3):209-214. 被引量:29
  • 2刘洁,张东来.关于自适应高斯混合背景模型的更新算法的研究[J].微计算机信息,2006(08S):241-242. 被引量:23
  • 3蔡征,黄瑞光.运动图像序列的多目标跟踪技术及实现[J].计算机与数字工程,2006,34(9):140-143. 被引量:4
  • 4CUCCHIARA R, PICCARDI M, PRATI A. Detecting moving objects, ghosts, and shadows in video streams[ EB/OL]. [ 2009 - 05 - 15]. http://www, cs. utsa. edu/-qitian/seminar/Fall04/video/ 01233909. pdf.
  • 5LOB P L, VELASTIN S A. Automatic congestion detection system for underground platforms[ C]// Proceedings of 2001 International Symposium on Intelligent Multimedia Video and Speech Processing. New York: IEEE, 2001:158 - 161.
  • 6RIDDER C, MUNKELT O, KIRCHNER H. Adaptive background estimation and foreground detection using Kalman-fihering [ EB/ OL]. http://serdis, dis. ulpgc. es/-ii-vpc/MatDocerr/notas_practicas/TC_2/ICRAM-95-Ridder-etal_ps.
  • 7WREN C R, AZARBAYEJANI A, DARRELL A, et al. Pfinder: Real-time tracking of the human body [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 780 -785.
  • 8STAUFFER C, GRIMSON W E L. Adaptive background mixture models for real-time tracking[ EB/OL]. [ 2009 - 04 - 05] http:// www. ai. mit. edu/projects/vsam/Publications/stauffer_ cvpr98 _ track, pdf.
  • 9KAEWTRAKULPONG P , BOWDEN R . An improved adaptive background mixture model for real-time tracking with shadow detection[ EB/OL]. [ 2009 - 05 - 10]. http://personal, ee. surrey, ac. uk/Personal/R. Bowden/publications/avbs01/avbs01. pdf.
  • 10Tang Yi,Liu Weiming,Xiong Liang.Improving robustness and accuracy in moving object detection using section-distribution background model.Natural Computation ICNC'08 Fourth International Conference,2008; 6:167-174.

共引文献242

同被引文献112

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2李滔,王俊普,吴秀清,唐金辉.后验概率估计及其应用:基于核Logistic回归的方法[J].模式识别与人工智能,2006,19(6):689-695. 被引量:3
  • 3王艳华,刘伟宁,陈爱华.基于小波变换的海空背景下小目标检测研究[J].电子器件,2007,30(3):992-994. 被引量:4
  • 4Salti S, Cavallaro A, and Stefano L D. Adaptive appearance modeling for video tracking: survey and evaluation[J]. IEEE Transactions on Image Processing, 2012, 21(10): 4334- 4348.
  • 5Jiang F, Yuan J S, Tsaftaris S, et al.. Anomalous video event detection using spatiotemporal context[J]. Computer Vision and Image Understanding, 2011, 115(3): 323-333.
  • 6Varcheie P D Z and Bilodeau G A. People tracking using a network-based PTZ camera[J]. Machine Vision and Application, 2011, 22(4): 671-690.
  • 7Zhou X H, Collins R T, Kanade T, et al.. A master-slave system to acquire biometric imagery of humans at a distance[C]. ACM SIGMM International Workshop on Video Surveillance, Berkeley, USA, Nov. 7, 2003: 113-120.
  • 8Choi H C, Park U, and Jain A K. PTZ camera assisted face acquisition, tracking & recognition[C]. IEEE International Conference on Biometrics: Theory, Application and Systems, Washington, USA, Sept. 27 29, 2010:1- 6.
  • 9Krahnstoever N O, Yu T, Lira S N, et al.. Collaborative real-time control of active cameras in large-scale surveillance systems[C]. Workshop on Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications, Marseille, France, Oct. 18, 2008:1- 12.
  • 10Chen C H, Yao Y, Page D, et al.. Heterogeneous fusion of omaidirectioual and PTZ cameras for multiple object tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(8): 1052-1063.

引证文献10

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部