期刊文献+

彩色图像有效压缩及联合重建的研究 被引量:2

Study on Effective Compression and Joint Reconstruction of Color Image
原文传递
导出
摘要 足够的稀疏性是信号或图像压缩感知精确重建的前提,但实际情况下的彩色图像并不完全满足此约束条件。为了降低稀疏性的限制,这里给出了基于小波分解与联合重建的彩色图像压缩方法,该方法是将彩色图像的RGB分量独立地分解成密集和稀疏两部分,密集部分采用传统方法编码,稀疏部分采用压缩感知进行压缩编码。文中还讨论了如何采用联合重建算法同时重建RGB 3个分量的稀疏部分,及结合密集部分进行原始彩色图像的重建问题。仿真结果表明:该方法是实现实际彩色图像的压缩传输和精确重建的一种有效方法。 The premise of exact reconstruction is that the signal or image with compressed sensing is sparse enough, but the real color image could not satisfy this condition. For reducing the restriction of sparsity, the compressing method for color image based on wavelet decomposing and joint reconstruction is proposed, this method independently decomposes the RGB portion of color image into to dense part and sparse part, the dense part is encoded with the traditional method, while the sparse part with compressed sensing. This paper also discusses how to restore the sparse part of the RGB portion with joint reconstruction algorithm and reconstruct the original color image in integration with the dense part. Simulation indicates that this method provides an effective method for implementing the compressed transmission and exact reconstruction of color image.
作者 刘杰 陈怀新
出处 《通信技术》 2012年第1期59-62,共4页 Communications Technology
基金 国防预研基金资助课题(No.1090220102)
关键词 压缩感知 小波分解 联合重建 彩色图像 compressed sensing wavelet decomposing joint reconstruction color image
  • 相关文献

参考文献13

  • 1DONOHO D L.Compressed Sensing[J].IEEE Trans InformTheory,2006(52):1289-1306.
  • 2CANDéS E,ROMBERG J,TAO T.Robust UncertaintyPrinciples:Exact Signal Reconstruction fromHighly Incomplete Frequency Information[J].IEEETransactons on Information Theory,2006,52(02):489-509.
  • 3BARANIUK R,CEVHER V,DUARTE M,et al.Model-basedCompressive Sensing[J].IEEE Trans.Inform.ThEory,2010,56(04):1982-2001.
  • 4NAGESH P,LI Baoxin.Compressive Image of ColorImages[C].Taiwan:[s.n.],2009.
  • 5HAN Bing,WU Feng,WU Dapeng.Image Representationby Compressed Sensing[J].International Conferenceon Information Processing(ICIP),2008(12-15):1344-1347.
  • 6BARANIUK R.Compressive Sensing[J].IEEE SignalProcessing Magazine,2007,24(04):118-121.
  • 7何雪云,潘林,彭伟刚.压缩感知在稀疏信道估计中的应用[J].通信技术,2011,44(9):27-29. 被引量:7
  • 8DAVENPORT M,WAKIN M.Analysis of OrthogonalMatching Pursuit using the Restricted IsometryProperty[J].IEEE Trans.Inform.Theory,2010,56(09):4395-4401.
  • 9BOURGAIN J,DILWORTH S,FORD K,et al.ExplicitConstructions of Rip Matrices and RelatedProblems[J].Duke Math.J,2011(159):145-185.
  • 10BARON D,WAKIN M B,DUARTE M F,et al.DistributedCompressed Sensing[EB/OL].(2005-07-11)[2011-03-30].http://www.dsp.ece.rice.edu/cs/.

二级参考文献15

  • 1杨先麟,朱艳芹.小波分析在图像处理中的应用[J].国外电子测量技术,2007,26(6):19-22. 被引量:15
  • 2SHEN L, PAPADAKIS M, KAKADIARIS I A, et al. Image Denoisingusing a Tight Frame[J]. IEEE Transactions on Image Processing, 2006, 15(05): 1254-1263.
  • 3XIN J, LIN C W, SUN M T. Digital Video Transcoding Processings [J]. IEEE, 2005, 93(01) : 152-155.
  • 4CHUNG K L, YAN W M. Fast 2D Discrete Cosine Transform on Compressed Image in Restricted Quadtreeand Shading Format[J]. Information Processing Letters, 2002,18(01):13-2.
  • 5BARANIUK R G. Compressive Sensing[EB/OL]. (2004-09- 14) [2011 -02-11].http://dsp. rice. edu/files/cs/baraniukcskcture 07. pdf.
  • 6TROPP J A, GILBERT A C. Signal Recovery from Random Measurements Via Orthogonal Matching Pursuit[J]. IEEE Trans. Inf. Theory, 2007, 53(12): 4655-4666.
  • 7TONG L, SADLER B M, DONG M. Pilot-assisted Wireless Transmissions[J]. IEEE Signal Processing Magazine, 2004, 21(06):12-25.
  • 8PAREDES J L, ARCE G R, WANG Z. Ultra-Wideband Compressed Sensing: Channel Estimation[J]. IEEE Journal of Selected Topics in Signal Processing, 2007,1(03):383-395.
  • 9钟诚.小波变换及其应用研究[J].中国科技信息,2008(2):70-71. 被引量:8
  • 10郑伟,崔跃利,王芳.基于小波变换的图像压缩编码研究综述[J].通信技术,2008,41(2):83-85. 被引量:23

共引文献13

同被引文献8

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部