期刊文献+

气腔存在和小野条件下不同光子剂量算法的计算精度比较 被引量:3

Comparison of Calculation Precision of Photon Dose between the Two Algorithms for the Situation with Air Cavity and Small Fields
原文传递
导出
摘要 为了评估放射治疗剂量计算最常用的笔形束(PB)算法、卷积叠加(CS)算法处理小野且气腔存在条件下的计算精度,建立一包含气腔的水模体,分别用PB算法、CS算法和蒙特卡罗(MC)模拟计算1cm×1cm~7cm×7cm射野条件下该模体中的深度剂量和离轴比,并以MC模拟为标准比较深度剂量和离轴比曲线的扩展半影(自定义为10%~90%等剂量线之间的宽度)。研究结果显示PB算法和CS算法均高估了深度剂量,相比之下PB算法高估的程度更严重;CS算法计算的离轴比和MC模拟接近,向两侧发散,而PB算法计算的离轴比无明显发散。这表明在小野且气腔存在的情况下,PB算法和CS算法的计算精度都不高,但相对来说CS算法的计算精度高于PB算法。 In order to evaluate the calculation precision of the pencil beam(PB) algorithm and convolution-superposition(CS) algorithm for the situation with air cavity and small fields,we built a water phantom with an air cavity slab,in which the depth dose(DD) and off-axis ratio(OAR) for field 1cm×1cm to field 7cm×7cm were calculated by PB algorithms,CS algorithms and Monte Carlo(MC) simulation.The evaluation of algorithms by MC simulation was achieved by comparisons of DD with the spread penumbras of OAR curve self-defined as the width between isodose lines of 10% and 90%.It was shown that PB algorithm and CS algorithm both overestimated the DD but the degree overestimated by PB algorithm was more serious.The CS algorithm showed a better agreement with the MC simulation for the OARs,which spread to both laterals,while that was not predicted accurately by PB algorithm.It was indicated that PB algorithm and CS algorithm do not have high calculation precision whereas CS algorithms is relatively better for the situation with air cavity and small fields.
出处 《生物医学工程学杂志》 CAS CSCD 北大核心 2012年第1期75-79,共5页 Journal of Biomedical Engineering
关键词 笔形束算法 卷积叠加算法 蒙特卡罗模拟 等效组织空气比法 Pencil beam(PB) algorithm Convolution-superposition(CS) algorithm Monte Carlo(MC) simulation Equivalent TAR
  • 相关文献

参考文献12

  • 1GRAY A, OLIVER L D, JOHNSTON P N. The accuracy of the pencil beam convolution and anisotropic analytical algo- rithms in predicting the dose effects due to attenuation from immobilization devices and large air gaps[J]. Med Phys, 2009, 36(7): 3181-3191.
  • 2KRIEGER T, SAUER O A. Monte carlo-versus pencil- beam-/eollapsed-cone-dose calculation in a heterogeneous multi-layer phantom[J]. Phys Med Biol, 2005, 50(5): 859- 868.
  • 3JONES A O, DAS I J. Comparison of inhomogeneity correc- tion algorithms in small photon fields[J]. Med Phys, 2005, 32(3) : 766-776.
  • 4FOGLIATA A, VANETTIE, ALBERS D, et al. On the do- simetric behaviour of photon dose calculation algorithms in the presence of simple geometric heterogeneities~eomparison with monte carlo calculations[J]. Phys Med Biol, 2007, 52 (5), 1363-1385.
  • 5CARRASCO P, JORNET N, DUCH M A, et al. Compari- son of dose calculation algorithms in phantoms with lung e- quivalent heterogeneities under conditions of lateral electronic disequilibrium[J]. Med Phys, 2004, 31(10)t 2899-2911.
  • 6KNOOS T,WIESLANDER E,COZZI L, et al. Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations[J]. Phys Med Bi- ol, 2006, 51(22): 5785-5807.
  • 7DARYOUSH S B, ROGERS D W. Sensitivity of megavolt- age photon beam monte carlo simulations to electron beam and other parameters[J]. Med Phys, 2002, 29(3), 379-390.
  • 8KAWRAKOW I, ROGERS D W, WALTERS B R. Large ef- ficiency improvements in beamnrc using directional brems- strahlung splitting[J]. Med Phys, 2004, 31 (10): 2883- 2898.
  • 9李乾坤,傅玉川.小射野条件下高能和低能Χ射线在非均匀介质中的剂量特性的比较研究[J].四川大学学报(自然科学版),2007,44(2):375-379. 被引量:7
  • 10CHOW J C, GRIGOROV G N. Dosimetry of a small air cavi- ty for clinical electron beams: a monte carlo study[J]. Med Dosim, 2010, 35(2): 92-100.

二级参考文献13

  • 1Rustgi A K,Samueld M A,Rustgi S N.Influence of air inhomogeneities in radiosurgical beams[J].Med Dosim,1997,22:95.
  • 2Jones A O,Das I J,Jones F L.A monte carlo study of IMRT beamlets in inhomogeneous media[J].Med Phys,2003,30:296.
  • 3Jones A O.The effects of lateral electronic disequilibrium on small IMRT beamlets[R].Proceedings of the 46th Annual ASTRO Meeting,2004.
  • 4Saitoh H,Fujisaki T,Sakai R,et al.Dose distribution of narrow beam irradiation for small lung tumor[J].Biol Phys,2002,53:1380.
  • 5Paskalev K A,Seuntjens J P,Horacio J,et al.Podgorsak,physical aspects of dynamic stereotactic radiosurgery with very small photon beams (1.5 and 3 mm in diameter)[J].Med Phys,2003,30(2):111.
  • 6Verhaegen F,Seuntjens J P.Monte Carlo modelling of external radiotherapy photon beams[J].Phys Med Biol,2003,48:R107.
  • 7Andreo P.Monte Carlo techniques in medical physics[J].Phys Med Biol,1991,36:861.
  • 8Fu Y C,Luo Z M.Application of the Monte Carlo simulation to the cavity theory based on virtual electron source concept[J].Phys Med Biol,2002,47:3263.
  • 9Rogers D W O,Kawrakow I,Seuntjens J P,et al.NRC user codes for EGSnrc[R].NRCC Report PIRS-702,2000.
  • 10Khan F M.The physics of radiation therapy[M].3rd ed.Philadelphia:Lippincott Williams & Wilkins,2003.

共引文献6

同被引文献14

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部