摘要
基于简单铰链裂纹模型,建立了含初始弯曲裂纹转子的无量纲动力学模型,可适用于稳态、瞬态、非线性等不同运动状态下、不同系统参数情形下裂纹转子的振动分析。经解析求解对比了含初始弯曲裂纹转子与无初始弯曲裂纹转子谐波频率成分的差异,计算得到了裂纹激励与初始弯曲激励的参与因子,研究了系统的亚临界共振特性。采用Floquet理论分析了含初始弯曲裂纹转子的稳定性,讨论了不同的刚度变化、阻尼比对系统稳定性的影响,可为裂纹转子识别提供依据。
Based on the simple hinge crack model,the dynamic equation of a cracked rotor with initial deflection was modelled in dimensionless form,which can be applied to the nonlinear vibration analysis of cracked rotor with different parameters in stationary or transient state.By the aid of analytical solution,the frequency components of the cracked rotor with initial deflection were compared with those without initial deflection.The participation factors of the crack and the initial deflection were obtained,and the subcritical resonance was discussed.The stability of the cracked rotor with initial deflection was investigated using Floquet theorem,and the influence of different stiffness variation and damping ratio on stability was analyzed,which can provide a basis for identification of cracked rotor.
出处
《振动与冲击》
EI
CSCD
北大核心
2012年第3期153-156,共4页
Journal of Vibration and Shock
基金
国家自然科学基金(10176014)
山东省高等学校科技计划(J09LD08)
青岛市公共领域科技支撑计划(091187nsh)
关键词
初始弯曲
裂纹转子
亚临界共振
稳定性
initial deflection
cracked rotor
subcritical resonance
stability